500 Publications

The odd free surface flows of a colloidal chiral fluid

V. Soni, E.S. Bililign, S. Magkiriadou, S. Sacanna, M. Shelley, W. Irvine

In simple fluids, such as water, invariance under parity and time-reversal symmetry imposes that the rotation of constituent ‘atoms’ is determined by the flow and that viscous stresses damp motion. Activation of the rotational degrees of freedom of a fluid by spinning its atomic building blocks breaks these constraints and has thus been the subject of fundamental theoretical interest across classical and quantum fluids. However, the creation of a model liquid that isolates chiral hydrodynamic phenomena has remained experimentally elusive. Here, we report the creation of a cohesive two-dimensional chiral liquid consisting of millions of spinning colloidal magnets and study its flows. We find that dissipative viscous ‘edge-pumping’ is a key and general mechanism of chiral hydrodynamics, driving unidirectional surface waves and instabilities, with no counterpart in conventional fluids. Spectral measurements of the chiral surface dynamics suggest the presence of Hall viscosity, an experimentally elusive property of chiral fluids. Precise measurements and comparison with theory demonstrate excellent agreement with a minimal chiral hydrodynamic model, paving the way for the exploration of chiral hydrodynamics in experiment.

Show Abstract

Self-straining of actively crosslinked microtubule networks

S. Fürthauer, B. Lemma, P. Foster, S.Ems-McClung, Che-Hang Yu, C. Walczak, Z. Dogic, D. Needleman, M. Shelley

Cytoskeletal networks are foundational examples of active matter and central to self-organized structures in the cell. In vivo, these networks are active and densely crosslinked. Relating their large-scale dynamics to the properties of their constituents remains an unsolved problem. Here, we study an in vitro active gel made from aligned microtubules and XCTK2 kinesin motors. Using photobleaching, we demonstrate that the gel’s aligned microtubules, driven by motors, continually slide past each other at a speed independent of the local microtubule polarity and motor concentration. This phenomenon is also observed, and remains unexplained, in spindles. We derive a general framework for coarse graining microtubule gels crosslinked by molecular motors from microscopic considerations. Using microtubule–microtubule coupling through a force–velocity relationship for kinesin, this theory naturally explains the experimental results: motors generate an active strain rate in regions of changing polarity, which allows microtubules of opposite polarities to slide past each other without stressing the material.

Show Abstract

The stormy fluid dynamics of the living cell

Cell biology has its beginnings in the first observations of cells through primitive microscopes and in the formulation of cell theory, which postulates that cells are the fundamental building blocks of life. Light microscopes showed that the insides of cells contained complex structures, such as nuclei, spindles, and chromosomes. The advent of electron microscopy in the mid 20th century brought the first truly detailed views of cell innards. Images revealed complexity at all observable scales, including cell-spanning networks of polymers, intricate organelles made of membranes, and a variety of micron- to nanometer-sized sacs and granules such as vesicles, lipid droplets, and ribosomes. (For a glossary of cellular components, see the Quick Study by Ned Wingreen, Physics Today, September 2006, page 80.) Those structures are immersed in or part of the aqueous cytoplasm—the cell’s fluidic medium.

Scientists have known for centuries that some plant and amoeboid cells have cytoplasmic flow inside them, as illustrated in figure 1a. Modern light microscopy has shown that such directed motions in cells are quite common. Researchers have studied those flows using such sophisticated methods as particle imaging velocimetry and simulations (see figures 1b and 1c). Such flows underlie the most basic biological functions of cells and can be a cause, an effect, or both. In any case, understanding them requires the study of forces and stresses that are created from activity inside the cell itself.

Show Abstract
September 2, 2019

Current approaches for the analysis of spindle organization

S Redemann, S. Fürthauer, M. Shelley, T Müller-Reichert

The organization of microtubules in spindles is complex and not fully understood. Here we report on current advances in generating 3D reconstructions of staged spindles by serial-section electron tomography, exemplified by the first mitotic spindle in early Caenorhabditis elegans embryo. We then review how advances in correlative light microscopy and quantitative electron tomography enable the development of theory and stochastic simulations, which describe how the microtubule organization in spindles emerges from their dynamics. We show how theory and simulations can be used to address long-standing questions in cell division research, advancing the field beyond a pure structural description of microtubules in spindles.

Show Abstract

Complex dynamics of long, flexible fibers in shear

John LaGrone, Ricardo Cortez, W. Yan, Lisa Fauci

The macroscopic properties of polymeric fluids are inherited from the material properties of the fibers embedded in the solvent. The behavior of such passive fibers in flow has been of interest in a wide range of systems, including cellular mechanics, nutrient acquisition by diatom chains in the ocean, and industrial applications such as paper manufacturing. The rotational dynamics and shape evolution of fibers in shear depends upon the slenderness of the fiber and the non-dimensional “elasto-viscous” number that measures the ratio of the fluid’s viscous forces to the fiber’s elastic forces. For a small elasto-viscous number, the nearly-rigid fiber rotates in the shear, but when the elasto-viscous number reaches a threshold, buckling occurs. For even larger elasto-viscous numbers, there is a transition to a “snaking behavior” where the fiber remains aligned with the shear axis, but its ends curl in, in opposite directions. These experimentally-observed behaviors have recently been characterized computationally using slender-body theory and immersed boundary computations. However, classical experiments with nylon fibers and recent experiments with actin filaments have demonstrated that for even larger elasto-viscous numbers, multiple buckling sites and coiling can occur. Using a regularized Stokeslet framework coupled with a kernel independent fast multipole method, we present simulations that capture these complex fiber dynamics.

Show Abstract

Convergent solutions of Stokes Oldroyd-B boundary value problems using the Immersed Boundary Smooth Extension (IBSE) method

D. Stein, RD Guy, B Thomases

The Immersed Boundary (IB) method has been widely used to solve fluid-structure interaction problems, including those where the structure interacts with polymeric fluids. In this paper, we examine the convergence of one such scheme for a well known two-dimensional benchmark flow for the Oldroyd-B constitutive model, and we show that the traditional IB-based scheme fails to adequately capture the polymeric stress near to embedded boundaries. We analyze the reason for such failure, and we argue that this feature is not specific to the case study chosen, but a general feature of such methods due to lack of convergence in velocity gradients near interfaces. In order to remedy this problem, we build a different scheme for the Oldroyd-B system using the Immersed Boundary Smooth Extension (IBSE) scheme, which provides convergent viscous stresses near boundaries. We show that this modified scheme produces convergent polymeric stresses through the whole domain, including on embedded boundaries, and produces solutions in good agreement with known benchmarks.

Show Abstract

Fast crystallization of rotating membrane proteins

We examine the interactions between actively rotating proteins moving in a membrane. Experimental evidence suggests that such rotor proteins, like the ATP synthases of the inner mitochondrial membrane, can arrange themselves into lattices. We show that crystallization is possible through a combination of hydrodynamic and repulsive interactions between the rotor proteins. In particular, hydrodynamic interactions induce rotational motion of the rotor protein assembly that, in the presence of repulsion, drives the system into a hexagonal lattice. The entire crystal rotates with an angular velocity which increases with motor density and decreases with lattice diameter - larger and sparser arrays rotate at a slower pace. The rotational interactions allow ensembles of proteins to sample configurations and reach an ordered steady state, which are inaccessible to the quenched nonrotational system. Rotational interactions thus act as a sort of temperature that removes disorder, except that actual thermal diffusion leads to expansion and loss of order. In contrast, the rotational interactions are bounded in space. Hence, once an ordered state is reached, it is maintained at all times.

Show Abstract
March 3, 2019

Computing collision stress in assemblies of active spherocylinders: applications of a fast and generic geometric method

W. Yan, Huan Zhang, M. Shelley

In this work, we provide a solution to the problem of computing collision stress in particle-tracking simulations. First, a formulation for the collision stress between particles is derived as an extension of the virial stress formula to general-shaped particles with uniform or non-uniform mass density. Second, we describe a collision-resolution algorithm based on geometric constraint minimization which eliminates the stiff pairwise potentials in traditional methods. The method is validated with a comparison to the equation of state of Brownian spherocylinders. Then we demonstrate the application of this method in several emerging problems of soft active matter.

Show Abstract

From cytoskeletal assemblies to living materials

P. Foster, S. Fürthauer, M. Shelley, D. Needleman

Many subcellular structures contain large numbers of cytoskeletal filaments. Such assemblies underlie much of cell division, motility, signaling, metabolism, and growth. Thus, understanding cell biology requires understanding the properties of networks of cytoskeletal filaments. While there are well established disciplines in biology dedicated to studying isolated proteins — their structure (Structural Biology) and behaviors (Biochemistry) — it is much less clear how to investigate, or even just describe, the structure and behaviors of collections of cytoskeletal filaments. One approach is to use methodologies from Mechanics and Soft Condensed Matter Physics, which have been phenomenally successful in the domains where they have been traditionally applied. From this perspective, collections of cytoskeletal filaments are viewed as materials, albeit very complex, ‘active’ materials, composed of molecules which use chemical energy to perform mechanical work. A major challenge is to relate these material level properties to the behaviors of the molecular constituents. Here we discuss this materials perspective and review recent work bridging molecular and network scale properties of the cytoskeleton, focusing on the organization of microtubules by dynein as an illustrative example.

Show Abstract

Coarse-graining the dynamics of immersed and driven fiber assemblies

An important class of fluid-structure problems involve the dynamics of ordered arrays of immersed, flexible fibers. While specialized numerical methods have been developed to study fluid-fiber systems, they become infeasible when there are many, rather than a few, fibers present, nor do these methods lend themselves to analytical calculation. Here, we introduce a coarse-grained continuum model, based on local-slender body theory, for elastic fibers immersed in a viscous Newtonian fluid. It takes the form of an anisotropic Brinkman equation whose skeletal drag is coupled to elastic forces. This model has two significant benefits: (1) the density effects of the fibers in a suspension become analytically manifest, and (2) it allows for the rapid simulation of dense suspensions of fibers in regimes inaccessible to standard methods. As a first validation, without fitting parameters, we achieve very reasonable agreement with 3D Immersed Boundary simulations of a bed of anchored fibers bent by a shear flow. Secondly, we characterize the effect of density on the relaxation time of fiber beds under oscillatory shear, and find close agreement to results from full numerical simulations. We then study buckling instabilities in beds of fibers, using our model both numerically and analytically to understand the role of fiber density and the structure of buckling transitions. We next apply our model to study the flow-induced bending of inclined fibers in a channel, as has been recently studied as a flow rectifier, examining the nature of the internal flows within the bed, and the emergence of inhomogeneous permeability. Finally, we extend the method to study a simple model of metachronal waves on beds of actuated fibers, as a model for ciliary beds. Our simulations reproduce qualitatively the pumping action of coordinated waves of compression through the bed.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates