151 Publications

Dispersion of run-and-tumble microswimmers through disordered media

Understanding the transport properties of microorganisms and self-propelled particles in porous media has important implications for human health as well as microbial ecology. In free space, most microswimmers perform diffusive random walks as a result of the interplay of self-propulsion and orientation decorrelation mechanisms such as run-and-tumble dynamics or rotational diffusion. In an unstructured porous medium, collisions with the microstructure result in a decrease in the effective spatial diffusivity of the particles from its free-space value. Here, we analyze this problem for a simple model system consisting of noninteracting point particles performing run-and-tumble dynamics through a two-dimensional disordered medium composed of a random distribution of circular obstacles, in the absence of Brownian diffusion or hydrodynamic interactions. The particles are assumed to collide with the obstacles as hard spheres and subsequently slide on the obstacle surface with no frictional resistance while maintaining their orientation, until they either escape or tumble. We show that the variations in the long-time diffusivity can be described by a universal dimensionless hindrance function f (φ,Pe) of the obstacle area fraction φ and Péclet number Pe, or ratio of the swimmer run length to the obstacle size. We analytically derive an asymptotic expression for the hindrance function valid for dilute media (Peφ 1), and its extension to denser media is obtained using stochastic simulations. As we explain, the model is also easily generalized to describe dispersion in three dimensions.

Show Abstract

Cytoplasmic stirring by active carpets

Large cells often rely on cytoplasmic flows for intracellular transport, maintaining homeostasis, and positioning cellular components. Understanding the mechanisms of these flows is essential for gaining insights into cell function, developmental processes, and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic stirring mechanisms that result from fluid-structure interactions between cytoskeletal elements at the cell cortex. Drawing inspiration from streaming flows in late-stage fruit fly oocytes, we propose an analytically tractable active carpet theory. This model deciphers the origins and three-dimensional spatio-temporal organization of such flows. Through a combination of simulations and weakly nonlinear theory, we establish the pathway of the streaming flow to its global attractor: a cell-spanning vortical twister. Our study reveals the inherent symmetries of this emergent flow, its low-dimensional structure, and illustrates how complex fluid-structure interaction aligns with classical solutions in Stokes flow. This framework can be easily adapted to elucidate a broad spectrum of self-organized, cortex-driven intracellular flows.

Show Abstract
November 8, 2023

Laser ablation and fluid flows reveal the mechanism behind spindle and centrosome positioning

Few techniques are available for studying the nature of forces that drive subcellular dynamics. Here we develop two complementary ones. The first is femtosecond stereotactic laser ablation, which rapidly creates complex cuts of subcellular structures and enables precise dissection of when, where and in what direction forces are generated. The second is an assessment of subcellular fluid flows by comparison of direct flow measurements using microinjected fluorescent nanodiamonds with large-scale fluid-structure simulations of different force transduction models. We apply these techniques to study spindle and centrosome positioning in early Caenorhabditis elegans embryos and to probe the contributions of microtubule pushing, cytoplasmic pulling and cortical pulling upon centrosomal microtubules. Based on our results, we construct a biophysical model to explain the dynamics of centrosomes. We demonstrate that cortical pulling forces provide a general explanation for many behaviours mediated by centrosomes, including pronuclear migration and centration, rotation, metaphase spindle positioning, asymmetric spindle elongation and spindle oscillations. This work establishes methodologies for disentangling the forces responsible for cell biological phenomena.

Show Abstract
November 2, 2023

Nonlinear Classification Without a Processor

Sam Dillavou, Andrea Liu, Douglas Durian, et al.

Computers, as well as most neuromorphic hardware systems, use central processing and top-down algorithmic control to train for machine learning tasks. In contrast, brains are ensembles of 100 billion neurons working in tandem, giving them tremendous advantages in power efficiency and speed. Many physical systems `learn' through history dependence, but training a physical system to perform arbitrary nonlinear tasks without a processor has not been possible. Here we demonstrate the successful implementation of such a system - a learning meta-material. This nonlinear analog circuit is comprised of identical copies of a single simple element, each following the same local update rule. By applying voltages to our system (inputs), inference is performed by physics in microseconds. When labels are properly enforced (also via voltages), the system's internal state evolves in time, approximating gradient descent. Our system; it requires no processor. Once trained, it performs inference passively, requiring approximately 100~W of total power dissipation across its edges. We demonstrate the flexibility and power efficiency of our system by solving nonlinear 2D classification tasks. Learning meta-materials have immense potential as fast, efficient, robust learning systems for edge computing, from smart sensors to medical devices to robotic control.

Show Abstract
November 1, 2023

Contrastive power-efficient physical learning in resistor networks

Menachem Stern, Douglas Durian, Andrea Liu, et al.

The prospect of substantial reductions in the power consumption of AI is a major motivation for the development of neuromorphic hardware. Less attention has been given to the complementary research of power-efficient learning rules for such systems. Here we study self-learning physical systems trained by local learning rules based on contrastive learning. We show how the physical learning rule can be biased toward finding power-efficient solutions to learning problems, and demonstrate in simulations and laboratory experiments the emergence of a trade-off between power-efficiency and task performance.

Show Abstract
November 1, 2023

Stochastic force inference via density estimation

Inferring dynamical models from low-resolution temporal data continues to be a significant challenge in biophysics, especially within transcriptomics, where separating molecular programs from noise remains an important open problem. We explore a common scenario in which we have access to an adequate amount of cross-sectional samples at a few time-points, and assume that our samples are generated from a latent diffusion process. We propose an approach that relies on the probability flow associated with an underlying diffusion process to infer an autonomous, nonlinear force field interpolating between the distributions. Given a prior on the noise model, we employ score-matching to differentiate the force field from the intrinsic noise. Using relevant biophysical examples, we demonstrate that our approach can extract non-conservative forces from non-stationary data, that it learns equilibrium dynamics when applied to steady-state data, and that it can do so with both additive and multiplicative noise models.

Show Abstract

Lack of chromokinesin Klp-19 creates a more rigid midzone and affects force transmission during anaphase in C. elegans

Vitaly Zimyanin, Magdalena Maga, D. Needleman, et al.

Recent studies have highlighted the significance of the spindle midzone – the region positioned between chromosomes – in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and the chromokinesin KLP-19 in C. elegans suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length and turn-over of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length in the spindle midzone, which also leads to increased microtubule – microtubule interaction, thus building up a more robust microtubule network. The spindle is globally stiffer and more stable, which has implications for the transmission of forces within the spindle affecting chromosome segregation dynamics. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.

Show Abstract
October 26, 2023

Modeling epithelial tissue and cell deformation dynamics using a viscoelastic slab sculpted by surface forces

During morphogenesis, epithelial monolayers actively alter their shape to create future body parts of the animal; this makes the epithelium one of the most active and critical structures in early animal development. While epithelia are often modeled as two-dimensional systems, real epithelia are not necessarily thin relative to cell cross section, and advances in 3D imaging have shown the possibility of substantial cell deformations in the third dimension, as well as differences in dynamics of the apical and basal surfaces indicative of three-dimensional coupling. With the importance of the third dimension in mind, we have developed a self-sculpting, three-dimensional model of epithelia whose dynamics are driven by active forces on its surface. We present a first, fundamental study for a reduced version of epithelia that investigates how surface forces affect its internal dynamics. Our model captures the 3D slab-like geometry of epithelia, viscoelasticity of tissue response, fluid surroundings, and driving from active surface forces. We represent epithelial tissue as a thick slab, a 3D continuum comprised of a Stokes fluid with an extra viscoelastic stress. Employing this model, we present both analytical and numerical solutions of the system and make quantitative predictions about cell shapes, cell dynamics, and the tissue's response to surface force in a three-dimensional setting. In particular, we investigate the implications of our model on the initiation of ventral furrow invagination and T1 transitions in Drosophila embryogenesis. In the former, we demonstrate the importance of fluid and geometric surroundings to drive invagination. In the latter, we show the limitations of surface forces alone to drive T1 transitions.

Show Abstract

Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems

Sarah Perez , S. Maddu, Ivo F. Sbalzarini, Philippe Poncet

In this paper, we present a novel methodology for automatic adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), and we demonstrate that this makes it possible to robustly address multi-objective and multiscale problems. BPINNs are a popular framework for data assimilation, combining the constraints of Uncertainty Quantification (UQ) and Partial Differential Equation (PDE). The relative weights of the BPINN target distribution terms are directly related to the inherent uncertainty in the respective learning tasks. Yet, they are usually manually set a-priori, that can lead to pathological behavior, stability concerns, and to conflicts between tasks which are obstacles that have deterred the use of BPINNs for inverse problems with multiscale dynamics.

The present weighting strategy automatically tunes the weights by considering the multitask nature of target posterior distribution. We show that this remedies the failure modes of BPINNs and provides efficient exploration of the optimal Pareto front. This leads to better convergence and stability of BPINN training while reducing sampling bias. The determined weights moreover carry information about task uncertainties, reflecting noise levels in the data and adequacy of the PDE model.

We demonstrate this in numerical experiments in Sobolev training, and compare them to analytically ε-optimal baseline, and in a multiscale Lotka-Volterra inverse problem. We eventually apply this framework to an inpainting task and an inverse problem, involving latent field recovery for incompressible flow in complex geometries.

Show Abstract

Identifying microscopic factors that influence ductility in disordered solids

Hongyi Xiao , Douglas J. Durian , Andrea J. Liu

There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress–strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.

Show Abstract
October 9, 2023
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates