134 Publications

Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models

A Leffler, A Kuryatov, H Zebroski, S Powell, P Filipenko, A Hussein, J Gorson, A Heizmann, S Lyskov, S Poget, A Nicke, J Lindstrom, B Rudy, R. Bonneau, M Holford

Venom peptide toxins such as conotoxins play a critical role in the characterization of nicotinic acetylcholine receptor (nAChR) structure and function and have potential as nervous system therapeutics as well. However, the lack of solved structures of conotoxins bound to nAChRs and the large size of these peptides are barriers to their computational docking and design. We addressed these challenges in the context of the α4β2 nAChR, a widespread ligand-gated ion channel in the brain and a target for nicotine addiction therapy, and the 19-residue conotoxin α-GID that antagonizes it. We developed a docking algorithm, ToxDock, which used ensemble-docking and extensive conformational sampling to dock α-GID and its analogs to an α4β2 nAChR homology model. Experimental testing demonstrated that a virtual screen with ToxDock correctly identified three bioactive α-GID mutants (α-GID[A10V], α-GID[V13I], and α-GID[V13Y]) and one inactive variant (α-GID[A10Q]). Two mutants, α-GID[A10V] and α-GID[V13Y], had substantially reduced potency at the human α7 nAChR relative to α-GID, a desirable feature for α-GID analogs. The general usefulness of the docking algorithm was highlighted by redocking of peptide toxins to two ion channels and a binding protein in which the peptide toxins successfully reverted back to near-native crystallographic poses after being perturbed. Our results demonstrate that ToxDock can overcome two fundamental challenges of docking large toxin peptides to ion channel homology models, as exemplified by the α-GID:α4β2 nAChR complex, and is extendable to other toxin peptides and ion channels.

Show Abstract

Impact of phenylalanines outside the dimer interface on phosphotriesterase stability and function

A Olsen, L Halvorsen, C Yang, R Ventura, L Yin, D. Renfrew, R. Bonneau, J Montclare

We explore the significance of phenylalanine outside of the phosphotriesterase (PTE) dimer interface through mutagenesis studies and computational modeling. Previous studies have demonstrated that the residue-specific incorporation of para-fluorophenylalanine (pFF) into PTE improves stability, suggesting the importance of phenylalanines in stabilization of the dimer. However, this comes at a cost of decreased solubility due to pFF incorporation into other parts of the protein. Motivated by this, eight single solvent-exposed phenylalanine mutants are evaluated via ROSETTA and good correspondence between experiments and these predictions is observed. Three residues, F304, F327, and F335, appear to be important for PTE activity and stability, even though they do not reside in the dimer interface region or active site. While the remaining mutants do not significantly affect structure or activity, one variant, F306L, reveals improved activity at ambient and elevated temperatures. These studies provide further insight into role of these residues on PTE function and stability.

Show Abstract
August 10, 2017

Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions

T Jiang, R Raviram, V Snetkova, P Rocha, C Proudhon, S Badri, R. Bonneau, J Skok, Y Kluger

Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3′Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings.

Show Abstract

Efficient Dual siRNA and Drug Delivery Using Engineered Lipoproteoplexes

C Fu Liu, R Chen, J Frezzo, P Katyal, L Hill, L Hill, N Srivastava, H More, R. Bonneau, D. Renfrew, J Montclare

An engineered supercharged coiled-coil protein (CSP) and the cationic transfection reagent Lipofectamine 2000 are combined to form a lipoproteoplex for the purpose of dual delivery of siRNA and doxorubicin. CSP, bearing an external positive charge and axial hydrophobic pore, demonstrates the ability to condense siRNA and encapsulate the small-molecule chemotherapeutic, doxorubicin. The lipoproteoplex demonstrates improved doxorubicin loading relative to Lipofectamine 2000. Furthermore, it induces effective transfection of GAPDH (60% knockdown) in MCF-7 breast cancer cells with efficiencies comparing favorably to Lipofectamine 2000. When the lipoproteoplex is loaded with doxorubicin, the improved doxorubicin loading (∼40 μg Dox/mg CSP) results in a substantial decrease in MCF-7 cell viability.

Show Abstract

Lung microbiome and host immune tone in subjects with idiopathic pulmonary fibrosis treated with inhaled interferon-γ

J Wang, M Lesko, M Badri, B Kapoor, B Wu, Y Li, G Smaldone, R. Bonneau, Z Kurtz, R Condos, L Segal

Therapies targeting inflammation reveal inconsistent results in idiopathic pulmonary fibrosis (IPF). Aerosolised interferon (IFN)-γ has been proposed as a novel therapy. Changes in the host airway microbiome are associated with the inflammatory milieu and may be associated with disease progression. Here, we evaluate whether treatment with aerosolised IFN-γ in IPF impacts either the lower airway microbiome or the host immune phenotype.

Patients with IPF who enrolled in an aerosolised IFN-γ trial underwent bronchoscopy at baseline and after 6 months. 16S rRNA sequencing of bronchoalveolar lavage fluid (BALF) was used to evaluate the lung microbiome. Biomarkers were measured by Luminex assay in plasma, BALF and BAL cell supernatant. The compPLS framework was used to evaluate associations between taxa and biomarkers.

IFN-γ treatment did not change α or β diversity of the lung microbiome and few taxonomic changes occurred. While none of the biomarkers changed in plasma, there was an increase in IFN-γ and a decrease in Fit-3 ligand, IFN-α2 and interleukin-5 in BAL cell supernatant, and a decrease in tumour necrosis factor-β in BALF. Multiple correlations between microbial taxa common to the oral mucosa and host inflammatory biomarkers were found.

These data suggest that the lung microbiome is independently associated with the host immune tone and may have a potential mechanistic role in IPF.

Show Abstract
July 1, 2017

The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design

R Alford, A Leaver-Fay, J Jeliazkov, M O'Meara, F DiMaio, H Park, M Shapovalov, D. Renfrew, V Mulligan, K Kappel, J Labonte, M Pacella, R. Bonneau, P Bradley, R Dunbrack, R Das, D Baker, B Kuhlman, T Kortemme, J Gray

Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta’s success is the energy function: a model parametrized from small-molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. Finally, we discuss the latest advances in the energy function that extend its capabilities from soluble proteins to also include membrane proteins, peptides containing noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other macromolecules.

Show Abstract

Phosphotriesterase enzymes, methods and compositions related thereto

J Montclare, R. Bonneau, D. Renfrew, C Yang, C Yuvienco

The instant invention provides methods and related compositions for identifying polypeptides with improved stability and/or enzymatic activity in comparison to native forms, wherein the identified polypeptides comprise one or more non-natural amino acids. In certain embodiments, the present invention relates to novel phosphotriesterase enzymes comprising one or more non-natural amino acids. In a particular embodiment, the instant invention provides novel phosphotriesterase enzymes with greater stability and/or enhanced activity in comparison to native forms of the enzyme. The present invention also relates to compositions comprising novel phophotriesterase enzymes, such as prophylactics, decontaminants, animal feedstocks, and assay kits.

Show Abstract
April 11, 2017

Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility

X. Chen, Y Bowen, N Carriero, C Silva, R. Bonneau

Differential binding of transcription factors (TFs) at cis-regulatory loci drives the differentiation and function of diverse cellular lineages. Understanding the regulatory interactions that underlie cell fate decisions requires characterizing TF binding sites (TFBS) across multiple cell types and conditions. Techniques, e.g. ChIP-Seq can reveal genome-wide patterns of TF binding, but typically requires laborious and costly experiments for each TF-cell-type (TFCT) condition of interest. Chromosomal accessibility assays can connect accessible chromatin in one cell type to many TFs through sequence motif mapping. Such methods, however, rarely take into account that the genomic context preferred by each factor differs from TF to TF, and from cell type to cell type. To address the differences in TF behaviors, we developed Mocap, a method that integrates chromatin accessibility, motif scores, TF footprints, CpG/GC content, evolutionary conservation and other factors in an ensemble of TFCT-specific classifiers. We show that integration of genomic features, such as CpG islands improves TFBS prediction in some TFCT. Further, we describe a method for mapping new TFCT, for which no ChIP-seq data exists, onto our ensemble of classifiers and show that our cross-sample TFBS prediction method outperforms several previously described methods.

Show Abstract

Modeling and Design of Peptidomimetics to Modulate Protein–Protein Interactions

A Watkins, R. Bonneau, P Arora

We describe a modular approach to identify and inhibit protein–protein interactions (PPIs) that are mediated by protein secondary and tertiary structures with rationally designed peptidomimetics. Our analysis begins with entries of high-resolution complexes in the Protein Data Bank and utilizes conformational sampling, scoring, and design capabilities of advanced biomolecular modeling software to develop peptidomimetics.

Show Abstract

Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP

J. Koehler, S Lyskov, R. Bonneau

Membrane proteins are underrepresented in structural databases, which has led to a lack of computational tools and the corresponding inappropriate use of tools designed for soluble proteins. For membrane proteins, lipid accessibility is an essential property. Although programs are available for sequence-based prediction of lipid accessibility and structure-based identification of solvent-accessible surface area, the latter does not distinguish between water accessible and lipid accessible residues in membrane proteins.

Show Abstract
February 8, 2017
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates