2005 Publications

Trapping, gliding, vaulting: transport of semiflexible polymers in periodic post arrays

B. Chakrabarti, C. Gaillard, D. Saintillan

The transport of deformable particles through porous media underlies a wealth of applications ranging from filtration to oil recovery to the transport and spreading of biological agents. Using direct numerical simulations, we analyze the dynamics of semiflexible polymers under the influence of an imposed flow in a structured two-dimensional lattice serving as an idealization of a porous medium. This problem has received much attention in the limit of reptation and for long-chain polymer molecules such as DNA that are transported through micropost arrays for electrophoretic chromatographic separation. In contrast to long entropic molecules, the dynamics of elastic polymers results from a combination of scattering with the obstacles and flow-induced buckling instabilities. We identify three dominant modes of transport that involve trapping, gliding and vaulting of the polymers around the obstacles, and we reveal their essential features using tools from dynamical systems theory. The interplay of these scattering dynamics with transport and deformations in the imposed flow results in the long-time asymptotic dispersion of the center of mass, which we quantify in terms of a hydrodynamic dispersion tensor. We then discuss a simple yet efficient chromatographic device that exploits the competition between different modes of transport to sort filaments in a dilute suspension according to their lengths.

Show Abstract

Solution of Stokes flow in complex nonsmooth 2D geometries via a linear-scaling high-order adaptive integral equation scheme

B. Wu, H. Zhu, A. Barnett, S. Veerapaneni

We present a fast, high-order accurate and adaptive boundary integral scheme for solving the Stokes equations in complex---possibly nonsmooth---geometries in two dimensions. The key ingredient is a set of panel quadrature rules capable of evaluating weakly-singular, nearly-singular and hyper-singular integrals to high accuracy. Near-singular integral evaluation, in particular, is done using an extension of the scheme developed in J.~Helsing and R.~Ojala, {\it J. Comput. Phys.} {\bf 227} (2008) 2899--2921. The boundary of the given geometry is ``panelized'' automatically to achieve user-prescribed precision. We show that this adaptive panel refinement procedure works well in practice even in the case of complex geometries with large number of corners. In one example, for instance, a model 2D vascular network with 378 corners required less than 200K discretization points to obtain a 9-digit solution accuracy.

Show Abstract

Black holes in the low-mass gap: Implications for gravitational-wave observations

Anuradha Gupta, Davide Gerosa, K. G. Arun, Emanuele Berti, W. Farr, B. S. Sathyaprakash

Binary neutron-star mergers will predominantly produce black-hole remnants of mass ∼3−4M⊙, thus populating the putative \emph{low mass gap} between neutron stars and stellar-mass black holes. If these low-mass black holes are in dense astrophysical environments, mass segregation could lead to "second-generation" compact binaries merging within a Hubble time. In this paper, we investigate possible signatures of such low-mass compact binary mergers in gravitational-wave observations. We show that this unique population of objects, if present, will be uncovered by the third-generation gravitational-wave detectors, such as Cosmic Explorer and Einstein Telescope. Future joint measurements of chirp mass  and effective spin χeff could clarify the formation scenario of compact objects in the low mass gap. As a case study, we show that the recent detection of GW190425 (along with GW170817) favors a double Gaussian mass model for neutron stars, under the assumption that the primary in GW190425 is a black hole formed from a previous binary neutron star merger.

Show Abstract

On the solution of Laplace’s equation in the vicinity of triple junctions

Jeremy Hoskins, M. Rachh

An important component of many image alignment methods is the calculation of inner products (correlations) between an image of $n\times n$ pixels and another image translated by some shift and rotated by some angle. For robust alignment of an image pair, the number of considered shifts and angles is typically high, thus the inner product calculation becomes a bottleneck. Existing methods, based on fast Fourier transforms (FFTs), compute all such inner products with computational complexity $\mathcal{O}(n^3 \log n)$ per image pair, which is reduced to $\mathcal{O}(N n^2)$ if only $N$ distinct shifts are needed. We propose to use a factorization of the translation kernel (FTK), an optimal interpolation method which represents images in a Fourier--Bessel basis and uses a rank-$H$ approximation of the translation kernel via an operator singular value decomposition (SVD). Its complexity is $\mathcal{O}(Hn(n + N))$ per image pair. We prove that $H = \mathcal{O}((W + \log(1/\epsilon))^2)$, where $2W$ is the magnitude of the maximum desired shift in pixels and $\epsilon$ is the desired accuracy. For fixed $W$ this leads to an acceleration when $N$ is large, such as when sub-pixel shift grids are considered. Finally, we present numerical results in an electron cryomicroscopy application showing speedup factors of $3$-$10$ with respect to the state of the art.

Show Abstract

Revisiting the Effect of f-Functions in Predicting the Right Reaction Mechanism for Hypervalent Iodine Reagents

Tian-Yu Sun, Kai Chen, Huakang Zhou, Tingting You, Penggang Yin, X. Wang

To understand the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents, we adopt the Ahlrichs basis set family def2-SVP and def2-TZVP to revisit the potential energy surfaces of IBX-mediated oxidation and Togni I's isomerisation. Our results further prove that f-functions (in either Pople, Dunning, or Ahlrichs basis set series) are indispensable to predict the correct rate-determining step of hypervalent iodine reagents. The f-functions have a significant impact on the predicted reaction barriers for processes involving the I-X (X = O, OH, CF3, etc.) bond cleavage and formation, e.g. in the reductive elimination step or the hypervalent twist step. We furthermore explore two hypervalent twist modes that account for the different influences of f-functions for IBX and Togni I. Our findings may be helpful for theoretical chemists to appropriately study the reaction mechanism of hypervalent iodine reagents.

Show Abstract

Genome-wide landscape of RNA-binding protein dysregulation reveals a major impact on psychiatric disorder risk

C. Park, J Zhou, A. Wong, K. Chen, C Theesfeld, R Darnell, O. Troyanskaya

Despite the strong genetic basis of psychiatric disorders, the molecular origins of these diseases are still largely unmapped. RNA-binding proteins (RBPs) are responsible for most post-transcriptional regulation, from splicing to translational to localization. RBPs thus act as key gatekeepers of cellular homeostasis, especially in the brain. Here, we leverage a deep learning approach to interrogate variant effects genome-wide, and discover that the dysregulation of RBP target sites is a principal contributor to psychiatric disorder risk. We show that specific modes of RBP regulation are genetically linked to the heritability of psychiatric disorders, and demonstrate that diverse RBP regulatory functions are reflected in distinct genome-wide negative selection signatures. Notably, RBP dysregulation has a stronger impact on psychiatric disorders than common coding region variants and explains heritability not currently captured by large-scale molecular QTL studies (expression QTLs and splicing QTLs). We share genome-wide profiles of RBP target site dysregulation, which we used to identify DDHD2 as a candidate schizophrenia risk gene, in a public web server. This resource provides a novel analytical framework to connect the full range of RNA regulation to complex disease.

Show Abstract

SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters

J. Magland, J. Jun, E. Lovero, A. J. Morley, C. L. Hurwitz, A. P. Buccino, S. Garcia, A. Barnett

Spike sorting is a crucial step in electrophysiological studies of neuronal activity. While many spike sorting packages are available, there is little consensus about which are most accurate under different experimental conditions. SpikeForest is an open-source and reproducible software suite that benchmarks the performance of automated spike sorting algorithms across an extensive, curated database of ground-truth electrophysiological recordings, displaying results interactively on a continuously-updating website. With contributions from eleven laboratories, our database currently comprises 650 recordings (1.3 TB total size) with around 35,000 ground-truth units. These data include paired intracellular/extracellular recordings and state-of-the-art simulated recordings. Ten of the most popular spike sorting codes are wrapped in a Python package and evaluated on a compute cluster using an automated pipeline. SpikeForest documents community progress in automated spike sorting, and guides neuroscientists to an optimal choice of sorter and parameters for a wide range of probes and brain regions.

Show Abstract

Close Binary Companions to APOGEE DR16 Stars: 20,000 Binary-star Systems Across the Color–Magnitude Diagram

A. Price-Whelan, D. Hogg, Hans-Walter Rix, et. al.

Many problems in contemporary astrophysics---from understanding the formation of black holes to untangling the chemical evolution of galaxies---rely on knowledge about binary stars. This, in turn, depends on discovery and characterization of binary companions for large numbers of different kinds of stars in different chemical and dynamical environments. Current stellar spectroscopic surveys observe hundreds of thousands to millions of stars with (typically) few observational epochs, which allows binary discovery but makes orbital characterization challenging. We use a custom Monte Carlo sampler (The Joker) to perform discovery and characterization of binary systems through radial-velocities, in the regime of sparse, noisy, and poorly sampled multi-epoch data. We use it to generate posterior samplings in Keplerian parameters for 232,531 sources released in APOGEE Data Release 16. Our final catalog contains 19,635 high-confidence close-binary (P < few years, a < few AU) systems that show interesting relationships between binary occurrence rate and location in the color-magnitude diagram. We find notable faint companions at high masses (black-hole candidates), at low masses (substellar candidates), and at very close separations (mass-transfer candidates). We also use the posterior samplings in a (toy) hierarchical inference to measure the long-period binary-star eccentricity distribution. We release the full set of posterior samplings for the entire parent sample of 232,531 stars. This set of samplings involves no heuristic "discovery" threshold and therefore can be used for myriad statistical purposes, including hierarchical inferences about binary-star populations and sub-threshold searches.

Show Abstract

Excess dNTPs Trigger Oscillatory Surface Flow in the Early Drosophila Embryo

S. Dutta, N. Djabrayan, C. Smits, C. Rowley, S. Shvartsman

During the first 2 hours of Drosophila development, precisely orchestrated nuclear cleavages, cytoskeletal rearrangements, and directed membrane growth lead to the formation of an epithelial sheet around the yolk. The newly formed epithelium remains relatively quiescent during the next hour as it is patterned by maternal inductive signals and zygotic gene products. We discovered that this mechanically quiet period is disrupted in embryos with high levels of dNTPs, which have been recently shown to cause abnormally fast nuclear cleavages and interfere with zygotic transcription. High levels of dNTPs are associated with robust onset of oscillatory two-dimensional flows during the third hour of development. Tissue cartography, particle image velocimetry, and dimensionality reduction techniques reveal that these oscillatory flows are low dimensional and are characterized by the presence of spiral vortices. We speculate that these aberrant flows emerge through an instability triggered by deregulated mechanical coupling between the nascent epithelium and three-dimensional yolk. These results highlight an unexplored connection between a core metabolic process and large-scale mechanics in a rapidly developing embryo.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates