2005 Publications

libdlr: Efficient imaginary time calculations using the discrete Lehmann representation

J. Kaye, Kun Chen , Hugo U. R. Strand

We introduce libdlr, a library implementing the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. The DLR basis consists of a collection of exponentials chosen by the interpolative decomposition to ensure stable and efficient recovery of Green's functions from imaginary time or Matsubara frequency samples. The library provides subroutines to build the DLR basis and grids, and to carry out various standard operations. The simplicity of the DLR makes it straightforward to incorporate into existing codes as a replacement for less efficient representations of imaginary time Green's functions, and libdlr is intended to facilitate this process. libdlr is written in Fortran, provides a C header interface, and contains a Python module pydlr. We also introduce a stand-alone Julia implementation, Lehmann.jl

Show Abstract

Pre-infection antiviral innate immunity contributes to sex differences in SARS-CoV-2 infection

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper’s transparent peer review process is included in the supplemental information.

Show Abstract
November 1, 2022

A structural optimization algorithm with stochastic forces and stresses

Siyuan Chen, S. Zhang
We propose an algorithm for optimizations in which the gradients contain stochastic noise. This arises, for example, in structural optimizations when computations of forces and stresses rely on methods involving Monte Carlo sampling, such as quantum Monte Carlo or neural network states, or are performed on quantum devices which have intrinsic noise. Our proposed algorithm is based on the combination of two key ingredients: an update rule derived from the steepest descent method, and a staged scheduling of the targeted statistical error and step-size, with position averaging. We compare it with commonly applied algorithms, including some of the latest machine learning optimization methods, and show that the algorithm consistently performs efficiently and robustly under realistic conditions. Applying this algorithm, we achieve full-degree optimizations in solids using ab initio many-body computations, by auxiliary-field quantum Monte Carlo with planewaves and pseudopotentials. A new metastable structure in Si was discovered in a mixed geometry and lattice relaxing simulation. In addition to structural optimization in materials, our algorithm can potentially be useful in other problems in various fields where optimization with noisy gradients is needed.
Show Abstract

Controlling Floquet states on ultrashort time scales

Matteo Lucchini, Fabio Medeghini, Yingxuan Wu, Federico Vismarra, Roćıo Borrego-Varillas, Aurora Crego, Fabio Frassetto, Luca Poletto, Shunsuke A. Sato, Hannes Hübener, Umberto De Giovannini, A. Rubio, Mauro Nisoli
The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be established already within 10 cycles of the driving field. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the population of the Floquet sidebands can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.
Show Abstract

Real-space obstruction in quantum spin Hall insulators

Philipp Eck, Carmine Ortix, Armando Consiglio, Jonas Erhardt, Maximilian Bauernfeind, Simon Moser, Ralph Claessen, D. Di Sante, Giorgio Sangiovanni
The recently introduced classification of two-dimensional insulators in terms of topological crystalline invariants has been applied so far to "obstructed" atomic insulators characterized by a mismatch between the centers of the electronic Wannier functions and the ionic positions. We extend this notion to quantum spin Hall insulators in which the ground state cannot be described in terms of time-reversal symmetric localized Wannier functions. A system equivalent to graphene in all its relevant electronic and topological properties except for a real-space obstruction is identified and studied via symmetry analysis as well as with density functional theory. The low-energy model comprises a local spin-orbit coupling and a non-local symmetry breaking potential, which turn out to be the essential ingredients for an obstructed quantum spin Hall insulator. An experimental fingerprint of the obstruction is then measured in a large-gap triangular quantum spin Hall material.
Show Abstract

High-Resolution EEG Source Reconstruction with Boundary Element Fast Multipole Method Using Reciprocity Principle and TES Forward Model Matrix

William A. Wartman, Tommi Raij, M. Rachh, Fa-Hsuan Lin, Konstantin Weise, Thomas Knoesche, Burkhard Maess, Carsten H. Wolters, Aapo R. Nummenmaa, Sergey N. Makaroff, Matti Hämäläinen

Background Accurate high-resolution EEG source reconstruction (localization) is important for several tasks, including rigorous and rapid mental health screening.Objective The present study has developed, validated, and applied a new source localization algorithm utilizing a charge-based boundary element fast multipole method (BEM-FMM) coupled with the Helmholtz reciprocity principle and the transcranial electrical stimulation (TES) forward solution.Methods The unknown cortical dipole density is reconstructed over the entire cortical surface by expanding into global basis functions in the form of cortical fields of active TES electrode pairs. These pairs are constructed from the reading electrodes. An analog of the minimum norm estimation (MNE) equation is obtained after substituting this expansion into the reciprocity principle written in terms of measured electrode voltages. Delaunay (geometrically balanced) triangulation of the electrode cap is introduced first. Basis functions for all electrode pairs connected by the edges of a triangular mesh are precomputed and stored in memory. A smaller set of independent basis functions is then selected and employed at every time instant. This set is based on the highest voltage differences measured.Results The method is validated against the classic, yet challenging problem of median nerve stimulation and the tangential cortical sources located at the posterior wall of the central sulcus for an N20/P20 peak (2 scanned subjects). The method is further applied to perform source reconstruction of synthesized tangential cortical sources located at the posterior wall of the central sulcus (12 different subjects). In the second case, an average source reconstruction error of 7 mm is reported for the best possible noiseless scenario.Conclusions Once static preprocessing with TES electrodes has been done (the basis functions have been computed), our method requires fractions of a second to complete the accurate high-resolution source localization.Competing Interest StatementThe authors have declared no competing interest.

Show Abstract
bioRxiv
November 1, 2022

Catching actin proteins in action

P. Cossio, Glen M. Hocky

Two groups have visualized actin — the protein polymer that gives cells their shape — at high resolution. The structures provide in-depth views of the polymer as it adopts fleeting states and undergoes conformational changes.

Show Abstract

Observation of room temperature excitons in an atomically thin topological insulator

Marcin Syperek, Raul Stühler, Armando Consiglio, Paweł Holewa, Paweł Wyborski, Łukasz Dusanowski, Felix Reis, Sven Höfling, Ronny Thomale, Werner Hanke, Ralph Claessen, D. Di Sante, Christian Schneider
Optical spectroscopy of ultimately thin materials has significantly enhanced our understanding of collective excitations in low-dimensional semiconductors. This is particularly reflected by the rich physics of excitons in atomically thin crystals which uniquely arises from the interplay of strong Coulomb correlation, spin-orbit coupling (SOC), and lattice geometry. Here we extend the field by reporting the observation of room temperature excitons in a material of non-trivial global topology. We study the fundamental optical excitation spectrum of a single layer of bismuth atoms epitaxially grown on a SiC substrate (hereafter bismuthene or Bi/SiC) which has been established as a large-gap, two-dimensional (2D) quantum spin Hall (QSH) insulator. Strongly developed optical resonances are observed to emerge around the direct gap at the K and K’ points of the Brillouin zone, indicating the formation of bound excitons with considerable oscillator strength. These experimental findings are corroborated, concerning both the character of the excitonic resonances as well as their energy scale, by ab-initio GW and Bethe-Salpeter equation calculations, confirming strong Coulomb interaction effects in these optical excitations. Our observations provide evidence of excitons in a 2D QSH insulator at room temperature, with excitonic and topological physics deriving from the very same electronic structure.
Show Abstract
October 23, 2022

Multibody molecular docking on a quantum annealer

Mohit Pandey, Tristan Zaborniak, V. Mulligan, et al

Molecular docking, which aims to find the most stable interacting configuration of a set of molecules, is of critical importance to drug discovery. Although a considerable number of classical algorithms have been developed to carry out molecular docking, most focus on the limiting case of docking two molecules. Since the number of possible configurations of N molecules is exponential in N, those exceptions which permit docking of more than two molecules scale poorly, requiring exponential resources to find high-quality solutions. Here, we introduce a one-hot encoded quadratic unconstrained binary optimization formulation (QUBO) of the multibody molecular docking problem, which is suitable for solution by quantum annealer. Our approach involves a classical pre-computation of pairwise interactions, which scales only quadratically in the number of bodies while permitting well-vetted scoring functions like the Rosetta REF2015 energy function to be used. In a second step, we use the quantum annealer to sample low-energy docked configurations efficiently, considering all possible docked configurations simultaneously through quantum superposition. We show that we are able to minimize the time needed to find diverse low-energy docked configurations by tuning the strength of the penalty used to enforce the one-hot encoding, demonstrating a 3-4 fold improvement in solution quality and diversity over performance achieved with conventional penalty strengths. By mapping the configurational search to a form compatible with current- and future-generation quantum annealers, this work provides an alternative means of solving multibody docking problems that may prove to have performance advantages for large problems, potentially circumventing the exponential scaling of classical approaches and permitting a much more efficient solution to a problem central to drug discovery and validation pipelines.

Show Abstract

Dynamics, scaling behavior, and control of nuclear wrinkling

Jonathan A. Jackson, Nicolas Romeo, J. I. Alsous, et al.

The cell nucleus is enveloped by a complex membrane, whose wrinkling has been implicated in disease and cellular aging. The biophysical dynamics and spectral evolution of nuclear wrinkling during multicellular development remain poorly understood due to a lack of direct quantitative measurements. Here, we combine live-imaging experiments, theory, and simulations to characterize the onset and dynamics of nuclear wrinkling during egg development in the fruit fly, Drosophila melanogaster, when nurse cell nuclei increase in size and display stereotypical wrinkling behavior. A spectral analysis of three-dimensional high-resolution data from several hundred nuclei reveals a robust asymptotic power-law scaling of angular fluctuations consistent with renormalization and scaling predictions from a nonlinear elastic shell model. We further demonstrate that nuclear wrinkling can be reversed through osmotic shock and suppressed by microtubule disruption, providing tunable physical and biological control parameters for probing mechanical properties of the nuclear envelope. Our findings advance the biophysical understanding of nuclear membrane fluctuations during early multicellular development.

Show Abstract
October 20, 2022
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates