2005 Publications

Neuron-Glia Signaling Regulates the Onset of the Antidepressant Response

Vicky Yao, O. Troyanskaya
Commonly prescribed antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) take weeks to achieve therapeutic benefits1, 2. The underlying mechanisms of why antidepressants take weeks or months to reverse depressed mood are not understood. Using a single cell sequencing approach, we analyzed gene expression changes in mice subjected to stress-induced depression and determined their temporal response to antidepressant treatment in the cerebral cortex. We discovered that both glial and neuronal cell populations elicit gene expression changes in response to stress, and that these changes are reversed upon treatment with fluoxetine (Prozac), a widely prescribed selective serotonin reuptake inhibitor (SSRI). Upon reproducing the molecular signaling events regulated by fluoxetine3 in a cortical culture system, we found that these transcriptional changes are serotonin-dependent, require reciprocal neuron-glia communication, and involve temporally-specified sequences of autoregulation and cross-regulation between FGF2 and BDNF signaling pathways. Briefly, stimulation of Fgf2 synthesis and signaling directly regulates Bdnf synthesis and secretion cell-non-autonomously requiring neuron-glia interactions, which then activates neuronal BDNF-TrkB signaling to drive longer-term neuronal adaptations4–6 leading to improved mood. Our studies highlight temporal and cell type specific mechanisms promoting the onset of the antidepressant response, that we propose could offer novel avenues for mitigating delayed onset of antidepressant therapies.
Show Abstract
2021

Energy Landscape analysis of metal-insulator transitions: theory and application to Ca

Alexandru B. Georgescu, Andrew J. Millis
We present a general methodology that enables the disentanglement of the electronic and lattice contributions to the metal-insulator transition by building an energy landscape from numerical solutions of the equation of state. The methodology works with any electronic structure method that provides electronic expectation values at given atomic positions. Applying the theory to rare-earth perovskite nickelates (RNiO
Show Abstract

Fizeau Drag in Graphene Plasmonics

Y. Dong, L. Xiong, I. Y. Phinney, Z. Sun, R. Jing, A. S. McLeod, S. Zhang, S. Liu, F. L. Ruta, H. Gao, Z. Dong, R. Pan, J. H. Edgar, P. Jarillo-Herrero, L. S. Levitov, A. J. Millis, M. M. Fogler, D. A. Bandurin, D. N. Basov
https://arxiv.org/abs/2103.10831
Show Abstract

Quantum Criticality in Twisted Transition Metal Dichalcogenides

Augusto Ghiotto, En-Min Shih, Giancarlo S. S. G. Pereira, Daniel A. Rhodes, Bumho Kim, Jiawei Zang, Andrew J. Millis, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Lei Wang, Cory R. Dean, Abhay N. Pasupathy
In moiré heterostructures, gate-tunable insulating phases driven by electronic correlations have been recently discovered. Here, we use transport measurements to characterize the gate-driven metal-insulator transitions and the metallic phase in twisted WSe
Show Abstract

Long-lived phonon polaritons in hyperbolic materials

Guangxin Ni, Alexander McLeod, Zhiyuan Sun, Joseph Matson, Leo Lo, Daniel Rhodes, Frank Ruta, Samuel Moore, Rocco Vitalone, Ramon Cuscó, Lluis Artus, Lin Xiong, Cory Dean, James Hone, A. Millis, Michael Fogler, James Edgar, Joshua Caldwell, Dmitri Basov
Natural hyperbolic materials with dielectric permittivities of opposite sign along different principal axes can confine long-wavelength electromagnetic waves down to the nanoscale, well below the diffraction limit. This has been demonstrated using hyperbolic phonon polaritons (HPP) in hexagonal boron nitride (hBN) and -MoO3, among other materials. However, HPP dissipation at ambient conditions is substantial and its fundamental limits remain unexplored1,2. Here, we exploit cryogenic nano-infrared imaging to investigate propagating HPP in isotopically pure hBN and naturally abundant -MoO3 crystals. Close to liquid-nitrogen temperatures, the losses for HPP in isotopic hBN drop significantly, resulting in propagation lengths in excess of 25 micrometers, with lifetimes exceeding 5 picoseconds, thereby surpassing prior reports on such highly-confined polaritonic modes. Our nanoscale, temperature-dependent imaging reveals the relevance of acoustic phonons in hyperbolic polariton damping and will be instrumental in mitigating such losses for miniaturized middle infrared technologies operating at the liquid-nitrogen temperatures.
Show Abstract
2021

Skewed Non-Fermi Liquids and the Seebeck Effect

A. Georges, Jernej Mravlje
We consider non-Fermi liquids in which the inelastic scattering rate has an intrinsic particle-hole asymmetry and obeys ω/T scaling. We show that, in contrast to Fermi liquids, this asymmetry influences the low-temperature behaviour of the thermopower even in the presence of impurity scattering. Implications for the unconventional sign and temperature dependence of the thermopower in cuprates in the strange metal (Planckian) regime are emphasized.
Show Abstract

Mott insulating states with competing orders in the triangular lattice Hubbard model

A. Wietek, R. Rossi, Fedor Šimkovic, Marcel Klett, Philipp Hansmann, M. Ferrero, Miles E. Stoudenmire, Thomas Schäfer, A. Georges
The physics of the triangular lattice Hubbard model exhibits a rich phenomenology, ranging from a metal-insulator transition, intriguing thermodynamic behavior, and a putative spin liquid phase at intermediate coupling, ultimately becoming a magnetic insulator at strong coupling. In this multi-method study, we combine a finite-temperature tensor network method, minimally entangled thermal typical states (METTS), with two Green function-based methods, connected-determinant diagrammatic Monte Carlo (DiagMC) and cellular dynamical mean-field theory (CDMFT), to establish several aspects of this model. We elucidate the evolution from the metallic to the insulating regime from the complementary perspectives brought by these different methods. We compute the full thermodynamics of the model on a width-4 cylinder using METTS in the intermediate to strong coupling regime. We find that the insulating state hosts a large entropy at intermediate temperatures, which increases with the strength of the coupling. Correspondingly, and consistently with a thermodynamic Maxwell relation, the double occupancy has a minimum as a function of temperature which is the manifestation of the Pomeranchuk effect of increased localisation upon heating. The intermediate coupling regime is found to exhibit both pronounced chiral as well as stripy antiferromagnetic spin correlations. We propose a scenario in which time-reversal symmetry broken states compete with nematic, lattice rotational symmetry breaking orders at lowest temperatures.
Show Abstract

Toward Confined Carbyne with Tailored Properties

Lei Shi, Ryosuke Senga, Kazu Suenaga, Hiromichi Kataura, Takeshi Saito, Alejandro Pérez Paz, A. Rubio, Paola Ayala, Thomas Pichler
Confining carbyne to a space that allows for stability and controlled reactivity is a very appealing approach to have access to materials with tunable optical and electronic properties without rival. Here, we show how controlling the diameter of single-walled carbon nanotubes opens the possibility to grow a confined carbyne with a defined and tunable band gap. The metallicity of the tubes has a minimal influence on the formation of the carbyne, whereas the diameter plays a major role in the growth. It has been found that the properties of confined carbyne can be tailored independently from its length and how these are mostly determined by its interaction with the carbon nanotube. Molecular dynamics simulations have been performed to interpret these findings. Furthermore, the choice of a single-walled carbon nanotube host has been proven crucial even to synthesize an enriched carbyne with the smallest energy gap currently reported and with remarkable homogeneity.
Show Abstract
January 1, 2021

A mechanical model of blastocyst hatching

Viggo Tvergaard, D. Needleman, Alan Needleman

We develop a continuum mechanics model of blastocyst hatching. The blastocyst and the zona pellucida are modeled as concentric thick-walled initially spherical shells embedded in a viscous medium. Each shell is characterized by a nonlinear elastic–viscous–constitutive relation. The stiffer outer shell (the zona pellucida) contains an opening. The softer inner shell (the blastocyst) is subject to a continually increasing pressure, which can eventually drive the escape of the inner shell from the outer shell (“hatching”). The focus is on the continuum mechanics modeling framework and illustrating the sort of quantitative predictions that can be made. Numerical examples are presented for the predicted dependence of the evolution of the escape process on values of parameters characterizing the constitutive response of the shells, on the viscosity of the external medium and on the size of the opening in the zona pellucida.

Show Abstract

Minimally Entangled Typical Thermal States Algorithms for Finite Temperature Matsubara Green Functions

D. Bauernfeind , X. Cao, Miles E. Stoudenmire, O. Parcollet
We extend finite-temperature tensor network methods to compute Matsubara imaginary-time correlation functions, building on the minimally entangled typical thermal states (METTS) and purification algorithms. While imaginary-time correlation functions are straightforward to formulate with these methods, care is needed to avoid convergence issues that would result from naive estimators. As a benchmark, we study the single-band Anderson impurity model, even though the algorithm is quite general and applies to lattice models. The special structure of the impurity model benchmark system and our choice of basis enable techniques such as reuse of high-probability METTS for increasing algorithm efficiency. The results are competitive with state-of-the-art continuous time Monte Carlo. We discuss the behavior of computation time and error as a function of the number of purified sites in the Hamiltonian.
Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates