Irena Mamajanov, Ph.D.

Carnegie Institution of Washington
Past SCOL Member

SCOL Project: Potential Protoenzymes: Structure and Function of Hyperbranched Polyesters

Enzymes are biopolymers responsible for the catalysis of chemical conformations that sustain life. Modern enzymes are comprised of complex protein or RNA structures unlikely to be present on prebiotic Earth. Enzymatic molecules through tree-dimensional folding create compartments that bind and orient specific reactions. Moreover, enzymes can create local environments with polarity different from water to augment the reaction rate. These properties of enzymes can be approximated by synthetically accessible polymers.

One such class of macromolecules is hyperbranched polymers, structures with a high degree of branching that possess globular structures similar to biological enzymes. Mamajanov will study the formation, structure and catalytic properties of hyperbranched polymers under prebiotically plausible conditions. A successful experimental demonstration of such approach would provide a valuable model of how the first enzyme-like systems could have arisen on Earth.

Education: Brandeis University, Ph.D. Physical Chemistry
Institution: Carnegie Institution of Washington, Geophysical Laboratory (laboratory of George D. Cody)

Advancing Research in Basic Science and MathematicsSubscribe to Life Sciences announcements and other foundation updates