Otto X. Cordero, Ph.D.

Co-Director, PriME
Doherty Assistant Professor of Ocean Utilization, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
Otto X. Cordero, Ph.D.’s Website

ECIMMEE Project: Systems Ecology of Particle-Attached Microbial Communities in the Ocean

Bacteria play an essential role in the oceans by digesting particles of organic matter that would otherwise sink to the ocean floor and remove essential nutrients from the marine food web. At the micro-scale, particle degradation is carried out, not by a single species, but by a multi-species collective (i.e. a community) that grows attached to particle surfaces. Within these particle-attached communities there is a multitude of bacteria-bacteria interactions that can control the function and dynamics of the community, ultimately affecting the global ecosystem process. By and large, the nature of these interactions and their impact on community dynamics and ecosystem function remain unknown. This gap in our understanding of microbial ecology ultimately hampers the development of mechanistic models that explain how ecological function emerges from interactions within hyper-diverse microbial collectives.
This Simons Early Career Investigator Award will support the development of a systems ecology approach to the study of particle-attached communities in the ocean. Within this research program we will learn the general structure of ecological interaction networks on particles, and the classes of interactions that dominate the particle-attached community. We will learn for instance whether interactions are primarily exploitative, competitive or mutualistic, and how these different types of interactions impact the degradation dynamics. Overall, through this project we will establish the link between micro-scale community ecology to macro-scale ecosystem function in the ocean.

Otto X. Cordero received a B.S. in computer and electrical engineering from the Polytechnic University of Ecuador, an M.Sc. in artificial intelligence from Utrecht University, and a Ph.D. in theoretical biology, also from Utrecht University. His main research focus is the ecology and evolution of natural microbial collectives. The Cordero lab is interested in understanding how social and ecological interactions at micro-scales impact the global productivity, stability and evolutionary dynamics of microbial ecosystems.

Advancing Research in Basic Science and MathematicsSubscribe to Life Sciences announcements and other foundation updates