Brown Bag Seminar

  • Speaker
  • Leroy Jia, Ph.D.Flatiron Research Fellow, Biophysical Modeling, CCB, Flatiron Institute
Date & Time

This presentation was pre-recorded.

An additional Dropbox link to view the recording will be sent on Monday morning 4/20/20.

Please view the talk at your convenience and participate in the Q & A segment via Zoom on Tuesday 4/21/20 at 1:15 pm.

Zoom Link

Speaker: Leroy Jia, Flatiron Research Fellow, Biophysical Modeling

Topic: “The odd free surface flows of a colloidal chiral fluid”

In simple fluids, such as water, invariance under parity and time-reversal symmetry imposes that the rotation of constituent ‘atoms’ is determined by the flow and that viscous stresses damp motion. Activation of the rotational degrees of freedom of a fluid by spinning its atomic building blocks breaks these constraints and has thus been the subject of fundamental theoretical interest across classical and quantum fluids. However, the creation of a model liquid that isolates chiral hydrodynamic phenomena has remained experimentally elusive. Here, we report the creation of a cohesive two-dimensional chiral liquid consisting of millions of spinning colloidal magnets and study its flows. We find that dissipative viscous ‘edge-pumping’ is a key and general mechanism of chiral hydrodynamics, driving unidirectional surface waves and instabilities, with no counterpart in conventional fluids. Spectral measurements of the chiral surface dynamics suggest the presence of Hall viscosity, an experimentally elusive property of chiral fluids. Precise measurements and comparison with theory demonstrate excellent agreement with a minimal chiral hydrodynamic model, paving the way for the exploration of chiral hydrodynamics in experiment.

April 21, 2020

The Odd Free Surface Flows of a Colloidal Chiral Fluid

Video Thumbnail

By clicking to watch this video, you agree to our privacy policy.

Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates