397 Publications

Quantitative models for building and growing fated small cell networks

Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.

Show Abstract

Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ

Ann A. Kim, Amanda Nguyen, X. Du, et al.

Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types – even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.

Show Abstract

Active Microphase Separation in Mixtures of Microtubules and Tip-Accumulating Molecular Motors

Bezia Lemma , Noah P. Mitchell, D. Needleman, et al.

Mixtures of filaments and molecular motors form active materials with diverse dynamical behaviors that vary based on their constituents’ molecular properties. To develop a multiscale of these materials, we map the nonequilibrium phase diagram of microtubules and tip-accumulating kinesin-4 molecular motors. We find that kinesin-4 can drive either global contractions or turbulent like extensile dynamics, depending on the concentrations of both microtubules and a bundling agent. We also observe a range of spatially heterogeneous nonequilibrium phases, including finite-sized radial asters, 1D wormlike chains, extended 2D bilayers, and system-spanning 3D active foams. Finally, we describe intricate kinetic pathways that yield microphase-separated structures and arise from the inherent frustration between the orientational order of filamentous microtubules and the positional order of tip-accumulating molecular motors. Our work reveals a range of novel active states. It also shows that the form of active stresses is not solely dictated by the properties of individual motors and filaments, but is also contingent on the constituent concentrations and spatial arrangement of motors on the filaments.

Show Abstract

Stability selection enables robust learning of differential equations from limited noisy data

S. Maddu, Bevan L. Cheeseman , Ivo F. Sbalzarini, C. Müller

We present a statistical learning framework for robust identification of differential equations from noisy spatio-temporal data. We address two issues that have so far limited the application of such methods, namely their robustness against noise and the need for manual parameter tuning, by proposing stability-based model selection to determine the level of regularization required for reproducible inference. This avoids manual parameter tuning and improves robustness against noise in the data. Our stability selection approach, termed PDE-STRIDE, can be combined with any sparsity-promoting regression method and provides an interpretable criterion for model component importance. We show that the particular combination of stability selection with the iterative hard-thresholding algorithm from compressed sensing provides a fast and robust framework for equation inference that outperforms previous approaches with respect to accuracy, amount of data required, and robustness. We illustrate the performance of PDE-STRIDE on a range of simulated benchmark problems, and we demonstrate the applicability of PDE-STRIDE on real-world data by considering purely data-driven inference of the protein interaction network for embryonic polarization in Caenorhabditis elegans. Using fluorescence microscopy images of C. elegans zygotes as input data, PDE-STRIDE is able to learn the molecular interactions of the proteins.

Show Abstract

Towards the cellular-scale simulation of motor-driven cytoskeletal assemblies

W. Yan, Saad Ansari, A. Lamson, Matthew A. Glaser, Meredith Betterton, M. Shelley

The cytoskeleton -- a collection of polymeric filaments, molecular motors, and crosslinkers -- is a foundational example of active matter, and in the cell assembles into organelles that guide basic biological functions. Simulation of cytoskeletal assemblies is an important tool for modeling cellular processes and understanding their surprising material properties. Here we present aLENS, a novel computational framework to surmount the limits of conventional simulation methods. We model molecular motors with crosslinking kinetics that adhere to a thermodynamic energy landscape, and integrate the system dynamics while efficiently and stably enforcing hard-body repulsion between filaments -- molecular potentials are entirely avoided in imposing steric constraints. Utilizing parallel computing, we simulate different mixtures of tens to hundreds of thousands of cytoskeletal filaments and crosslinking motors, recapitulating self-emergent phenomena such as bundle formation and buckling, and elucidating how motor type, thermal fluctuations, internal stresses, and confinement determine the evolution of active matter aggregates.

Show Abstract
May 26, 2022

Studying Interstellar Turbulence Driving Scales using the Bispectrum

M.J. O'Brien, B. Burkart, M. Shelley

We demonstrate the utility of the bispectrum, the Fourier three-point correlation function, for studying driving scales of magnetohydrodynamic (MHD) turbulence in the interstellar medium. We calculate the bispectrum by implementing a parallelized Monte Carlo direct measurement method, which we have made publicly available. In previous works, the bispectrum has been used to identify non-linear scaling correlations and break degeneracies in lower-order statistics like the power spectrum. We find that the bicoherence, a related statistic which measures phase coupling of Fourier modes, identifies turbulence driving scales using density and column density fields. In particular, it shows that the driving scale is phase-coupled to scales present in the turbulent cascade. We also find that the presence of an ordered magnetic field at large-scales enhances phase coupling as compared to a pure hydrodynamic case. We, therefore, suggest the bispectrum and bicoherence as tools for searching for non-locality for wave interactions in MHD turbulence.

Show Abstract
March 24, 2022

Sequence-structure-function relationships in the microbial protein universe

J. Koehler, Pawel Szczerbiak, D. Renfrew, N. Carriero, I. Fisk, R. Bonneau, et al.

For the past half-century, structural biologists relied on the notion that similar protein sequences give rise to similar structures and functions. While this assumption has driven research to explore certain parts of the protein universe, it disregards spaces that don’t rely on this assumption. Here we explore areas of the protein universe where similar protein functions can be achieved by different sequences and different structures. We predict ∼200,000 structures for diverse protein sequences from 1,003 representative genomes1 across the microbial tree of life, and annotate them functionally on a per-residue basis. Structure prediction is accomplished using the World Community Grid, a large-scale citizen science initiative. The resulting database of structural models is complementary to the AlphaFold database, with regards to domains of life as well as sequence diversity and sequence length. We identify 161 novel folds and describe examples where we map specific functions to structural motifs. We also show that the structural space is continuous and largely saturated, highlighting the need for shifting the focus from obtaining structures to putting them into context, to transform all branches of biology, including a shift from sequence-based to sequence-structure-function based meta-omics analyses.

Show Abstract
March 20, 2022

Deconstructing gastrulation at single-cell resolution

T. Stern, S. Shvartsman, E. F. Wieschaus

Gastrulation movements in all animal embryos start with regulated deformations of patterned epithelial sheets, which are driven by cell divisions, cell shape changes, and cell intercalations. Each of these behaviors has been associated with distinct aspects of gastrulation and has been a subject of intense research using genetic, cell biological, and more recently, biophysical approaches. Most of these studies, however, focus either on cellular processes driving gastrulation or on large-scale tissue deformations. Recent advances in microscopy and image processing create a unique opportunity for integrating these complementary viewpoints. Here, we take a step toward bridging these complementary strategies and deconstruct the early stages of gastrulation in the entire Drosophila embryo. Our approach relies on an integrated computational framework for cell segmentation and tracking and on efficient algorithms for event detection. The detected events are then mapped back onto the blastoderm shell, providing an intuitive visual means to examine complex cellular activity patterns within the context of their initial anatomic domains. By analyzing these maps, we identified that the loss of nearly half of surface cells to invaginations is compensated primarily by transient mitotic rounding. In addition, by analyzing mapped cell intercalation events, we derived direct quantitative relations between intercalation frequency and the rate of axis elongation. This work is setting the stage for systems-level dissection of a pivotal step in animal development.

Show Abstract
March 14, 2022

Thermodynamically consistent coarse-graining of polar active fluids

Scott Weady, D. Stein, M. Shelley

We introduce a closure model for coarse-grained kinetic theories of polar active fluids. Based on a thermodynamically consistent, quasi-equilibrium approximation of the particle distribution function, the model closely captures important analytical properties of the kinetic theory, including its linear stability and the balance of entropy production and dissipation. Nonlinear simulations show the model reproduces the qualitative behavior and nonequilibrium statistics of the kinetic theory, unlike commonly used closure models. We use the closure model to simulate highly turbulent suspensions in both two and three dimensions in which we observe complex multiscale dynamics, including large concentration fluctuations and a proliferation of polar and nematic defects.

Show Abstract
March 11, 2022

Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms

Zidong Zhang, Michel Zamojski, O. Troyanskaya, et al

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates