Flatiron Institute at NeurIPS


Adaptive whitening with fast gain modulation and slow synaptic plasticity (SPOTLIGHT)

Lyndon Duong · Eero Simoncelli (CCN) · Dmitri Chklovskii (CCN) · David Lipshutz (CCN)

A Spectral Theory of Neural Prediction and Alignment (SPOTLIGHT)

Abdulkadir Canatar* · Jenelle Feather* (CCN) · Albert Wakhloo · SueYeon Chung (CCN)

Birth of a Transformer: A Memory Viewpoint (SPOTLIGHT)
Alberto Bietti (CCM) · Vivien Cabannes · Diane Bouchacourt · Herve Jegou · Leon Bottou

Estimating Noise Correlations Across Continuous Conditions With Wishart Processes
Amin Nejatbakhsh (CCN) · Isabel Garon · Alex Williams (CCN)

Discriminative Calibration: Check Bayesian Computation from Simulations and Flexible Classifier
Yuling Yao (CCM) · Justin Domke

Variational Inference with Gaussian Score Matching
Chirag Modi (CCM) · Robert Gower (CCM) · Charles Margossian (CCM) · Yuling Yao (CCM) · David Blei · Lawrence Saul (CCM)

Provable convergence guarantees for black-box variational inference
Justin Domke · Robert Gower (CCM) · Guillaume Garrigos

A polar prediction model for learning to represent visual transformations
Pierre-Étienne Fiquet (CCN) · Eero Simoncelli (CCN)

Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations
Thomas Yerxa (CCN) · Yilun Kuang (CCN) · Eero Simoncelli (CCN) · SueYeon Chung (CCN)

Towards In-context Scene Understanding
Ivana Balazevic · David Steiner · Nikhil Parthasarathy (CCN) · Relja Arandjelović · Olivier Henaff

Self-supervised video pretraining yields robust and more human-aligned visual representations
Nikhil Parthasarathy (CCN) · S. M. Ali Eslami · Joao Carreira · Olivier Henaff



Interpretable theory for comparing biological and artificial neural networks (INVITED TALK)
SueYeon Chung (CCN)
Soft Matching Distance: A metric on neural representations that captures single-neuron tuning
Meenakshi Khosla · Alex Williams (CCN)
Benchmarks and deep learning models for localizing rodent vocalizations in social interactions
Ralph Peterson (CCN) · Aramis Tanelus (CCN) · Aman Choudhri (CCN) · Violet Ivan · Aaditya Prasad · David Schneider · Dan Sanes · Alex Williams (CCN)
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao · Robert Gower (CCM) · Robin Walters · Rose Yu
Unveiling the Hessian’s Connection to the Decision Boundary
Mahalakshmi Sabanayagam · Freya Behrens · Urte Adomaityte · Anna Dawid (CCQ)
Comparing neural models using their perceptual discriminability predictions
Jingyang Zhou (CCN) · Chanwoo Chun (CCN) · Ajay Subramanian · Eero Simoncelli (CCN)
Deep Bayesian Experimental Design for Quantum Many-Body Systems
Leopoldo Sarra (FMS) · Florian Marquardt
Sensitivity Analysis of Simulation-Based Inference for Galaxy Clustering
Shivam Pandey · Chirag Modi (CCA) · Benjamin Wandelt (CCA) · Matthew Ho · ChangHoon Hahn · Bruno Régaldo-Saint Blancard (CCM)
CHARM: Creating Halos with Auto-Regressive Multi-stage networks
Shivam Pandey · Chirag Modi (CCA) · Benjamin Wandelt (CCA) · Guilhem Lavaux
Unlocking the Power of Representations in Long-term Novelty-based Exploration
Steven Kapturowski · Alaa Saade · Daniele Calandriello · Charles Blundell · Pablo Sprechmann · Leopoldo Sarra (FMS) · Oliver Groth · Michal Valko · Bilal Piot
Stochastic force inference via density estimation
Victor Chardès (CCB) · Suryanarayana Maddu (CCB) · Michael Shelley (CCB)
Adversarial Attacks on Neuron Interpretation via Activation Maximization
Alex Fulleringer · Geraldin Nanfack · Jonathan Marty · Michael Eickenberg (CCM) · Eugene Belilovsky
Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
Nicolas Payot · Pablo Lemos · Laurence Perreault-Levasseur · Carolina Cuesta · Chirag Modi (CCA) · Yashar Hezaveh (CCA)
Variance Reduced Model Based Methods: New rates and adaptive step sizes
Robert Gower (CCM) · Frederik Kunstner · Mark Schmidt
Why Adam Outperforms Gradient Descent on Language Models: A Heavy-Tailed Class Imbalance Problem
Robin Yadav · Frederik Kunstner · Mark Schmidt · Alberto Bietti (CCM)
xVal: A Continuous Number Encoding for Large Language Models
Siavash Golkar (CCA) · Mariel Pettee · Michael Eickenberg (CCM) · Alberto Bietti (CCM) · Miles Cranmer (CCA) · Geraud Krawezik (SCC) · Francois Lanusse (CCA) · John McCabe · Ruben Ohana (CCM) · Liam Parker (CCA) · Bruno Régaldo-Saint Blancard (CCM) · Tiberiu Tesileanu (CCN) · Kyunghyun Cho · Shirley Ho (CCA)
AstroCLIP: Cross-Modal Pre-Training for Astronomical Foundation Models
Francois Lanusse (CCA) · Liam Parker (CCA) · Siavash Golkar (CCA) · Alberto Bietti (CCM) · Miles Cranmer (CCA) · Michael Eickenberg (CCM) · Geraud Krawezik (SCC) · John McCabe · Ruben Ohana · Mariel Pettee · Bruno Régaldo-Saint Blancard (CCM) · Tiberiu Tesileanu (CCN) · Kyunghyun Cho · Shirley Ho (CCA)
Multiple Physics Pretraining for Physical Surrogate Models
John McCabe · Bruno Régaldo-Saint Blancard (CCM) · Liam Parker (CCA) · Ruben Ohana · Miles Cranmer (CCA) · Alberto Bietti (CCM) · Michael Eickenberg (CCM) · Siavash Golkar (CCA) · Geraud Krawezik (SCC) · Francois Lanusse (CCA) · Mariel Pettee · Tiberiu Tesileanu (CCN) · Kyunghyun Cho · Shirley Ho (CCA)
Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function
Jiawei Zang (CCQ) · Matija Medvidović (CCQ) · Dominik Kiese (CCQ) · Domenico Di Sante (CCQ) · Anirvan Sengupta (CCQ) · Andy Millis (CCQ)
Removing Dust from CMB Observations with Diffusion Models
David Heurtel-Depeiges (CCM) · Blakesly Burkhart · Ruben Ohana · Bruno Régaldo-Saint Blancard (CCM)
Level Set Teleportation: the Good, the Bad, and the Ugly
Aaron Mishkin · Alberto Bietti (CCM) · Robert Gower (CCM)
A novel analysis of gradient descent under directional smoothness
Aaron Mishkin · Ahmed Khaled · Aaron Defazio · Robert Gower (CCM)
Stochastic force inference via density estimation
Victor Chardès (CCB) · Suryanarayana Maddu (CCB) · Michael Shelley (CCB)
Removing Dust from CMB Observations with Diffusion Models
David Heurtel-Depeiges (CCM)
On the universality of neural codes in vision
Florentin Guth (CCN) · Brice Ménard
Estimating shape distances on neural representations with limited samples
Dean Pospisil · Brett Larsen (CCN, CCM) · Sarah Harvey (CCN) · Alex Williams (CCN)
Unsupervised learning on spontaneous retinal activity leads to efficient neural representation geometry
Andrew Ligeralde* · Yilun Kuang* (CCN) · Thomas Yerxa (CCN) · Miah Pitcher · Marla Feller · SueYeon Chung (CCN)
Channel Selection for Test-Time Adaptation Under Distribution Shift
Pedro Vianna · Muawiz Chaudhary · An Tang · Guy Cloutier · Guy Wolf · Michael Eickenberg (CCM) · Eugene Belilovsky
Duality of Bures and Shape Distances with Implications for Comparing Neural Representations
Sarah Harvey (CCN) · Brett Larsen (CCN) · Alex Williams (CCN)
Variational quantum dynamics of two-dimensional rotor models
Matija Medvidović (CCQ) · Dries Sels (CCQ)
Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets
Andrea Roncoli · Aleksandra Ciprijanovic · M Voetberg · Francisco Villaescusa (CCA) · Brian Nord
Predicting Galaxy Interloper Fraction with GNNs
Elena Massara (CCA) · Francisco Villaescusa (CCA) · Will Percival
Associative Memories with Heavy-Tailed Data
Vivien Cabannes · Elvis Dohmatob · Alberto Bietti (CCM)
Phase Retrieval Using Double Deep Image Priors
Zhong Zhuang · David Yang · David Barmherzig (CCM) · Ju Sun
Transformers are efficient hierarchical chemical graph learners
Zihan Pengmei · Zimu Li · Chih-chan Tien · Risi Kondor (CCM) · Aaron Dinner
Strong generalization in diffusion models
Zahra Kadkhodaie (CCN) · Florentin Guth (CCN) · Eero Simoncelli (CCN) · Stephane Mallat (CCM)


* denotes that the persons are both first authors

Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates