60 Publications

Patterning potential of the terminal system in the Drosophila embryo

Keonyong Lee , Kate Molloy O’Neill, S. Shvartsman, et al

Segmentation of the Drosophila embryo is initiated by localized maternal signals. In this context, anteriorly localized Bicoid activates the gap genes in the anterior half of the embryo while posteriorly localized Nanos represses the translation of maternal hunchback mRNA to pattern the posterior half. The non-segmented termini are patterned by the localized activation of mitogen-activated protein kinase. Yet, the spatial extent of the terminal patterning system in regulating gap genes beyond poles remains unknown. We investigated the patterning potential of the terminal system using mutagenized embryos that lack both the anterior and the posterior maternal signaling systems. Using a combination of quantitative imaging and mathematical modeling, we analyzed the spatial patterns of gap genes in the early Drosophila embryo. We found that this mutant embryo develops symmetric cuticle patterns along the anteroposterior axis with two segments on each side. Notably, the terminal system can affect the expression of Krüppel in the torso region. Our mathematical model recapitulates the experimental data and reveals the potential bistability in the terminal patterning system. Collectively, our study suggests that the terminal system can act as a long-range inductive signal and establish multiple gene expression boundaries along the anteroposterior axis of the developing embryo.

Show Abstract

Live Imaging of Nurse Cell Behavior in Late Stages of Drosophila Oogenesis

Drosophila oogenesis is a powerful and tractable model for studies of cell and developmental biology due to the multitude of well-characterized events in both germline and somatic cells, the ease of genetic manipulation in fruit flies, and the large number of egg chambers produced by each fly. Recent improvements in live imaging and ex vivo culturing protocols have enabled researchers to conduct more detailed, longer-term studies of egg chamber development, enabling insights into fundamental biological processes. Here, we present a protocol for dissection, culturing, and imaging of late-stage egg chambers to study intercellular and directional cytoplasmic flow during “nurse cell dumping.” This critical developmental process towards the latter stages of oogenesis (stages 10b/11) results in rapid growth of the oocyte and shrinkage of the nurse cells and is accompanied by dynamic changes in cell shape.

Show Abstract

Concurrent ARFI Plaque Imaging and Wall Shear Stress Measurement in Human Carotid Artery, with Validation by Fluid Structure Interaction Model.

Keerthi S. Anand, E. Kolahdouz, et al.

The rupture potential of an atherosclerotic plaque is dependent on both the plaque's composition and the shear stresses it encounters from blood flow. Because plaques move and deform throughout the cardiac cycle, resulting in changes to plaque position and shape as well as to the encountered shear stresses, concurrent imaging of both risk factors over time is required to accurately predict plaque vulnerability. To evaluate the potential to achieve as much, multi-angle plane wave (PW) ARFI and least-squares vector Doppler data were acquired in a calibrated flow phantom with channels of 4–8 mm diameters and flow rates of 100–600 ml/min. The wall shear stress (WSS) was measured to within 15% of the ground-truth analytical solutions. The same methods were then implemented in an excised human cadaveric carotid with a x% stenotic plaque. ARFI VoA detected plaque regions of calcium and intraplaque hemorrhage that were validated by spatially-matched histology. Concurrent vector Doppler yielded a peak WSS of 5.2 Pa on the plaque shoulder, which was consistent with the 6.4 Pa WSS predicted by an immersed interface fluid-solid interation (FSI) model developed using the specific geometry of the examined cadaveric carotid. Overall our results demonstrate the feasibility of concurrent imaging of carotid plaque composition by ARFI VoA, vector flow, and WSS to better assess stroke risk.

Show Abstract

Dynamics, scaling behavior, and control of nuclear wrinkling

Jonathan A. Jackson, Nicolas Romeo, J. I. Alsous, et al.

The cell nucleus is enveloped by a complex membrane, whose wrinkling has been implicated in disease and cellular aging. The biophysical dynamics and spectral evolution of nuclear wrinkling during multicellular development remain poorly understood due to a lack of direct quantitative measurements. Here, we combine live-imaging experiments, theory, and simulations to characterize the onset and dynamics of nuclear wrinkling during egg development in the fruit fly, Drosophila melanogaster, when nurse cell nuclei increase in size and display stereotypical wrinkling behavior. A spectral analysis of three-dimensional high-resolution data from several hundred nuclei reveals a robust asymptotic power-law scaling of angular fluctuations consistent with renormalization and scaling predictions from a nonlinear elastic shell model. We further demonstrate that nuclear wrinkling can be reversed through osmotic shock and suppressed by microtubule disruption, providing tunable physical and biological control parameters for probing mechanical properties of the nuclear envelope. Our findings advance the biophysical understanding of nuclear membrane fluctuations during early multicellular development.

Show Abstract
October 20, 2022

Mechanics of stabilized intercellular bridges

Jaspreet Singh, J. I. Alsous, Krishna Garikipati, S. Shvartsman

Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model’s equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated—one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.

Show Abstract

Quantitative models for building and growing fated small cell networks

Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.

Show Abstract

Canary in the cardiac-valve coal mine: Flow velocity and inferred shear during prosthetic valve closure –predictors of blood damage and clotting

Lawrence N. Scotten, E. Kolahdouz

To demonstrate a clear link between predicted blood shear forces during valve closure and thrombogenicity that explains the thrombogenic difference between tissue and mechanical valves and provides a practical metric to develop and refine prosthetic valve designs for reduced thrombogenicity.

Show Abstract

Sex-specific topological differences in germline cell lineage trees

Rocky Diegmiller, J. I. Alsous, S. Shvartsman

A conserved phase of gametogenesis is the development of oocytes and sperm within cell clusters (germline cysts) that arise through serial divisions of a founder cell. The resulting cell lineage trees (CLTs) exhibit diverse topologies across animals and can give rise to numerous emergent behaviors. Despite their centrality, sex-specific differences underlying the evolution and patterning of these cell trees are unknown. In Drosophila melanogaster, oocytes develop within a highly invariant and maximally branched 16-cell tree whose topology is constrained by the fusome – a branched membranous organelle critical for proper mitosis in females; the same division pattern and topology are widely thought to occur during spermatogenesis. Using highly-resolved three-dimensional reconstructions based on a supervised learning algorithm, we show that cell divisions in male cysts can deviate from the maximally branched pattern, leading to greater topological variability. Furthermore, in contrast to females, fusome fragmentation is common, suggesting germ cell mitoses can occur in its absence. These findings thus add to the repertoire of CLT formation strategies, highlighting the diversity of mechanisms employed during gametogenesis in the animal kingdom.

Show Abstract

Dynamics of Drosophila endoderm specification

Shannon E. Keenan, M. Avdeeva, S. Shvartsman, et al.

During early Drosophila embryogenesis, a network of gene regulatory interactions orchestrates terminal patterning, playing a critical role in the subsequent formation of the gut. We utilized CRISPR gene editing at endogenous loci to create live reporters of transcription and light-sheet microscopy to monitor the individual components of the posterior gut patterning network across 90 min prior to gastrulation. We developed a computational approach for fusing imaging datasets of the individual components into a common multivariable trajectory. Data fusion revealed low intrinsic dimensionality of posterior patterning and cell fate specification in wild-type embryos. The simple structure that we uncovered allowed us to construct a model of interactions within the posterior patterning regulatory network and make testable predictions about its dynamics at the protein level. The presented data fusion strategy is a step toward establishing a unified framework that would explore how stochastic spatiotemporal signals give rise to highly reproducible morphogenetic outcomes.

Show Abstract

Deconstructing gastrulation at single-cell resolution

T. Stern, S. Shvartsman, E. F. Wieschaus

Gastrulation movements in all animal embryos start with regulated deformations of patterned epithelial sheets, which are driven by cell divisions, cell shape changes, and cell intercalations. Each of these behaviors has been associated with distinct aspects of gastrulation and has been a subject of intense research using genetic, cell biological, and more recently, biophysical approaches. Most of these studies, however, focus either on cellular processes driving gastrulation or on large-scale tissue deformations. Recent advances in microscopy and image processing create a unique opportunity for integrating these complementary viewpoints. Here, we take a step toward bridging these complementary strategies and deconstruct the early stages of gastrulation in the entire Drosophila embryo. Our approach relies on an integrated computational framework for cell segmentation and tracking and on efficient algorithms for event detection. The detected events are then mapped back onto the blastoderm shell, providing an intuitive visual means to examine complex cellular activity patterns within the context of their initial anatomic domains. By analyzing these maps, we identified that the loss of nearly half of surface cells to invaginations is compensated primarily by transient mitotic rounding. In addition, by analyzing mapped cell intercalation events, we derived direct quantitative relations between intercalation frequency and the rate of axis elongation. This work is setting the stage for systems-level dissection of a pivotal step in animal development.

Show Abstract
March 14, 2022
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates