134 Publications

PPII Helical Peptidomimetics Templated by Cation–π Interactions

T Craven, R. Bonneau, K Kirshenbaum

Poly-proline type II (PPII) helical PXXP motifs are the recognition elements for a variety of protein–protein interactions that are critical for cellular signaling. Despite development of protocols for locking peptides into α-helical and β-strand conformations, there remains a lack of analogous methods for generating mimics of PPII helical structures. We describe herein a strategy to enforce PPII helical secondary structure in the 19-residue TrpPlexus miniature protein. Through sequence variation, we showed that a network of cation–π interactions could drive the formation of PPII helical conformations for both peptide and N-substituted glycine peptoid residues. The achievement of chemically diverse PPII helical scaffolds provides a new route towards discovering peptidomimetic inhibitors of protein–protein interactions mediated by PXXP motifs.

Show Abstract
August 19, 2016

Side-Chain Conformational Preferences Govern Protein–Protein Interactions

A Watkins, R. Bonneau, P Arora

Protein secondary structures serve as geometrically constrained scaffolds for the display of key interacting residues at protein interfaces. Given the critical role of secondary structures in protein folding and the dependence of folding propensities on backbone dihedrals, secondary structure is expected to influence the identity of residues that are important for complex formation. Counter to this expectation, we find that a narrow set of residues dominates the binding energy in protein–protein complexes independent of backbone conformation. This finding suggests that the binding epitope may instead be substantially influenced by the side-chain conformations adopted. We analyzed side-chain conformational preferences in residues that contribute significantly to binding. This analysis suggests that preferred rotamers contribute directly to specificity in protein complex formation and provides guidelines for peptidomimetic inhibitor design.

Show Abstract

Racemization barriers of atropisomeric 3,3′-bipyrroles: an experimental study with theoretical verification

S. Chatterjee, G.L. Butterfoss, M. Mandal, B. Paul, S. Gupta, R. Bonneau, P. Jaisankar

The significant rotational energy barrier about the stereogenic carbon–carbon bond of axially chiral 3,3′-bipyrroles has been investigated by electronic circular dichroism (ECD) spectroscopy, time dependent HPLC analysis, and computational modeling. The results elucidate pathways and transition states involved in configurational inversion, thereby confirming that 3,3′-bipyrrole derivatives can exist in stable and isolable atropisomeric forms.

Show Abstract

A damage-independent role for 53BP1 that impacts break order and Igh architecture during class switch recombination

P Rocha, R Raviram, Y Fu, J Kim, V Luo, A Aljoufi, E Swanzey, A Pasquarella, E. Miraldi, R. Bonneau

During class switch recombination (CSR), B cells replace the Igh Cμ or δ exons with another downstream constant region exon (CH), altering the antibody isotype. CSR occurs through the introduction of AID-mediated double-strand breaks (DSBs) in switch regions and subsequent ligation of broken ends. Here, we developed an assay to investigate the dynamics of DSB formation in individual cells. We demonstrate that the upstream switch region Sμ is first targeted during recombination and that the mechanism underlying this control relies on 53BP1. Surprisingly, regulation of break order occurs through residual binding of 53BP1 to chromatin before the introduction of damage and independent of its established role in DNA repair. Using chromosome conformation capture, we show that 53BP1 mediates changes in chromatin architecture that affect break order. Finally, our results explain how changes in Igh architecture in the absence of 53BP1 could promote inversional rearrangements that compromise CSR.

Show Abstract

DDX5 and its associated lncRNA Rmrp modulate Th17 cell effector functions

W. Huang, B. Thomas, R.A. Flynn, S.J. Gavzy, L. Wu, S.V. Kim, J.A. Hall, E. Miraldi, C.P. Ng, F. Rigo, S. Meadows, N.R. Montoya, N.G. Herrera, A.I. Domingos, F. Rastinejad, R.M. Myers, F.V. Fuller-Pace, R. Bonneau, H.Y. Chang, O. Acuto, D.R. Littman

Th17 lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORγt, a ligand-regulated nuclear receptor. We identified the DEAD-box RNA helicase DDX5 as a RORγt partner that coordinates transcription of selective Th17 genes and is required for Th17-mediated inflammatory pathologies. Surprisingly, the ability of DDX5 to interact with RORγt and co-activate its targets depends on its intrinsic RNA helicase activity and binding of a conserved nuclear long noncoding RNA (lncRNA), Rmrp, which is mutated in Cartilage-Hair Hypoplasia (CHH) patients. A targeted Rmrp mutation in mice, corresponding to one in CHH patients, abrogated the lncRNA’s chromatin recruitment, ability to potentiate DDX5-RORγt interaction and RORγt target gene transcription. Elucidation of the link between Rmrp and the DDX5-RORγt complex reveals a role for RNA helicases and lncRNAs in tissue-specific transcriptional regulation and promises new opportunities for therapeutic intervention in Th17-dependent diseases.

Show Abstract

Active and inactive enhancers cooperate to exert localized and long-range control of gene regulation

C Proudhon, V Snetkova, R Raviram, C Lobry, S Badri, T Jiang , B Hao, T Trimarchi, Y Kluger, I Aifantis, R. Bonneau, J Skok

V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control.

Show Abstract

Generalized Stability Approach for Regularized Graphical Models

Selecting regularization parameters in penalized high-dimensional graphical models in a principled, data-driven, and computationally efficient manner continues to be one of the key challenges in high-dimensional statistics. We present substantial computational gains and conceptual generalizations of the Stability Approach to Regularization Selection (StARS), a state-of-the-art graphical model selection scheme. Using properties of the Poisson-Binomial distribution and convex non-asymptotic distributional modeling we propose lower and upper bounds on the StARS graph regularization path which results in greatly reduced computational cost without compromising regularization selection. We also generalize the StARS criterion from single edge to induced subgraph (graphlet) stability. We show that simultaneously requiring edge and graphlet stability leads to superior graph recovery performance independent of graph topology. These novel insights render Gaussian graphical model selection a routine task on standard multi-core computers.

Show Abstract

Helminth infection promotes colonization resistance via type 2 immunity

D Ramanan, R Bowcutt, S Lee, M Tang, Z Kurtz, Y Ding, K Honda, W Gause, M Blaser , R. Bonneau, Y Lim, K Caldwell

Increasing incidence of inflammatory bowel diseases, such as Crohn’s disease, in developed nations is associated with changes to the microbial environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the Crohn’s disease susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization by an inflammatory Bacteroides species. Resistance to Bacteroides colonization was dependent on type 2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota and that deworming treatment reduced levels of Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis in which certain individuals are genetically susceptible to the consequences of a changing microbial environment.

Show Abstract
April 29, 2016

Big Data, Social Media, and Protest

J Tucker, J Nagler, M MacDuffee, P Metzger, D Penfold-Brown, R. Bonneau

The past decade has witnessed a rapid rise in the use of social media around the globe. 1
For political scientists, this is a phenomenon begging to be understood. It has been claimed
repeatedly–usually in the absence of solid data–that these social media resources are
profoundly shaping participation in social movements, including protest movements (see
Bond, Fariss, Jones, Kramer, Marlow, Settle, & Fowler 2012; Cha et al. 2010; Jungherr,
Jurgens, & Schoen 2012; Lynch 2011; Shirky 2011). Social media are often assumed to affect an extremely wide range of individual-level behaviors, including communicating about politics to friends and family members, donating or soliciting money for political campaigns and causes, voting, and engaging in collective forms of protest. In truth, however, the research community knows remarkably little about whether (and especially how) the use of social media systematically affects political participation.

Show Abstract

Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination

A Thomas-Claudpierre, I Robert, P Rocha, R Raviram, E Schiavo, V Heyer, R. Bonneau, V Luo, J Reddy, T Borggrefe, J Skok, B Reina-San-Martin

Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.

Ig class switch recombination (CSR) is a long-range DNA recombination reaction that occurs between Ig switch regions (S regions) and that replaces the isotype expressed (from IgM to IgG, IgE, or IgA), providing novel effector functions for efficient antigen clearance (Chaudhuri et al., 2007). CSR is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID; Basu et al., 2011; Pavri and Nussenzweig, 2011), an enzyme that deaminates cytosines into uracils in the single-strand DNA exposed by transcription (Petersen-Mahrt et al., 2002). During CSR, the choice of recombination to a particular isotype is determined by the activation of specific S region promoters (Basu et al., 2011; Pavri and Nussenzweig, 2011), triggering the generation of noncoding germline transcripts (Chaudhuri et al., 2007). Germline transcription precedes recombination, is induced at both the donor and acceptor S regions, and is required for recombination (Chaudhuri et al., 2007). Transcriptional activation of the IgH locus during CSR is controlled by the Eμ enhancer located upstream of the donor (Sμ) S region and by a major regulatory region (RR) located at the 3′ end of the locus (3′ RR). Both of these enhancer elements are required for transcription and for CSR (Chaudhuri et al., 2007; Pavri and Nussenzweig, 2011). The current model is that during CSR, recombination between S regions proceeds by the inducible formation of long-range DNA loops involving the S region promoters and the Eμ and 3′ RR enhancers (Wuerffel et al., 2007; Kenter et al., 2012), possibly through transcription factors (Feldman et al., 2015). Nevertheless, the molecular mechanisms controlling these conformational changes remain to be elucidated.

Mediator is an evolutionarily conserved multiprotein complex composed of 31 subunits organized in four modules that is required for gene transcription by RNA polymerase II (Pol II; Malik and Roeder, 2010; Conaway and Conaway, 2011). The head, middle, and tail modules form a stable core complex that associates reversibly with the CDK8 module (consisting of cyclin-dependent kinase 8, cyclin C, Med12, and Med13) to control interactions of mediator with the Pol II machinery (Malik and Roeder, 2010; Conaway and Conaway, 2011). Mediator behaves as an interface between Pol II and transcription factors and is capable of promoting Pol II preinitiation complex assembly, transcription initiation by Pol II, regulation of Pol II pausing and elongation, recruitment of transcription elongation factors, and control of the phosphorylation state of the C-terminal domain of Pol II (Malik and Roeder, 2010; Conaway and Conaway, 2011; Allen and Taatjes, 2015). The Med1 subunit of mediator, part of the middle module, interacts with distinct transcriptional activators (Borggrefe and Yue, 2011) and has been shown to play a key role in embryonic development (Ito et al., 2000; Zhu et al., 2000), erythropoiesis (Stumpf et al., 2010), and iNKT cell development (Yue et al., 2011). In addition, Med1 recruitment to chromatin is one of the features that characterizes super enhancers (Whyte et al., 2013). Interestingly, mediator has also been implicated, together with cohesin, in the formation of long-range DNA loops (Malik and Roeder, 2010; Conaway and Conaway, 2011; Allen and Taatjes, 2015), and chromatin immunoprecipitation sequencing (ChIP-Seq) analysis for Smc1, Smc3, Med1, and Med12 revealed that cohesin–mediator binding predicts genomic sites of long-range promoter–enhancer interactions (Kagey et al., 2010; Phillips-Cremins et al., 2013). As we have recently implicated the cohesin complex in the mechanism of CSR (Thomas-Claudepierre et al., 2013), we have examined the role of mediator in CSR by performing shRNA-mediated knockdowns of the Med1 and Med12 subunits of mediator (belonging to different modules) in CH12 cells and by conditionally inactivating the Med1 subunit in developing B cells.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates