2005 Publications

Wavefunction embedding for molecular polaritons

Pavošević,Fabijan, A. Rubio
Polaritonic chemistry relies on the strong light-matter interaction phenomena for altering the chemical reaction rates inside optical cavities. To explain and to understand these processes, the development of reliable theoretical models is essential. While computationally efficient quantum electrodynamics self-consistent field (QED-SCF) methods, such as quantum electrodynamics density functional theory (QEDFT) needs accurate functionals, quantum electrodynamics coupled cluster (QED-CC) methods provide a systematic increase in accuracy but at much greater cost. To overcome this computational bottleneck, herein we introduce and develop the QED-CC-in-QED-SCF projection-based embedding method that inherits all the favorable properties from the two worlds, computational efficiency and accuracy. The performance of the embedding method is assessed by studying some prototypical but relevant reactions, such as methyl transfer reaction, proton transfer reaction, as well as protonation reaction in a complex environment. The results obtained with the new embedding method are in excellent agreement with more expensive QED-CC results. The analysis performed on these reactions indicate that the strong light-matter interaction is very local in nature and that only a small region should be treated at the QED-CC level for capturing important effects due to cavity. This work sets the stage for future developments of polaritonic quantum chemistry methods and it will serve as a guideline for development of other polaritonic embedding models.
Show Abstract

Floquet engineering the band structure of materials with optimal control theory

Alberto Castro, Umberto De Giovannini, Shunsuke A. Sato, Hannes Hübener, A. Rubio
We demonstrate that the electronic structure of a material can be deformed into Floquet pseudo-bands with arbitrarily tailored shapes. We achieve this goal with a novel combination of quantum optimal control theory and Floquet engineering. The power and versatility of this framework is demonstrated here by utilizing the independent-electron tight-binding description of the π electronic system of graphene. We show several prototype examples focusing on the region around the K (Dirac) point of the Brillouin zone: creation of a gap with opposing flat valence and conduction bands, creation of a gap with opposing concave symmetric valence and conduction bands -- which would correspond to a material with an effective negative electron-hole mass --, or closure of the gap when departing from a modified graphene model with a non-zero field-free gap. We employ time periodic drives with several frequency components and polarizations, in contrast to the usual monochromatic fields, and use control theory to find the amplitudes of each component that optimize the shape of the bands as desired. In addition, we use quantum control methods to find realistic switch-on pulses that bring the material into the predefined stationary Floquet band structure, i.e. into a state in which the desired Floquet modes of the target bands are fully occupied, so that they should remain stroboscopically stationary, with long lifetimes, when the weak periodic drives are started. Finally, we note that although we have focused on solid state materials, the technique that we propose could be equally used for the Floquet engineering of ultracold atoms in optical lattices, and to other non-equilibrium dynamical and correlated systems.
Show Abstract

A hidden population of massive black holes in simulated dwarf galaxies

Ray S. Sharma, A. Brooks, Michael Tremmel, Jillian Bellovary, Angelo Ricarte, Thomas R. Quinn

We explore the characteristics of actively accreting MBHs within dwarf galaxies in the \textsc{Romulus25} cosmological hydrodynamic simulation. We examine the MBH occupation fraction, x-ray active fractions, and AGN scaling relations within dwarf galaxies of stellar mass 108<Mstar<1010M⊙ out to redshift z=2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity at Mstar<3×1010M⊙, M200<3×1011M⊙. Local dwarf AGN in \textsc{Romulus25} follow observed scaling relations between AGN x-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable x-ray observations. Since z=2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result, the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low x-ray luminosities and high contamination from x-ray binaries and the hot interstellar medium that are undetectable by current x-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies, and include many MBHs that are undermassive relative to their host galaxy's stellar mass. Their detection relies not only on greater instrument sensitivity but on better modeling of x-ray contaminants or multi-wavelength surveys. Our results indicate dwarf AGN were substantially more active in the past despite being low-luminosity today, and indicate future deep x-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at least z=2.

Show Abstract

A follow-up on intermediate-mass black hole candidates in the second LIGO–Virgo observing run with the Bayes Coherence Ratio

Avi Vajpeyi, Rory Smith, Eric Thrane..., M. Isi, et. al.

The detection of an intermediate-mass black hole population (102−106 M⊙) will provide clues to their formation environments (e.g., disks of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses >55 M⊙ using data from LIGO's second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO-Virgo gravitational wave transient catalog GWTC-1, seven of which have been previously reported by other catalogs.

Show Abstract

An Atlas of Convection in Main-sequence Stars

A. Jermyn, Evan H. Anders, Daniel Lecoanet, M. Cantiello

Convection is ubiquitous in stars and occurs under many different conditions. Here we explore convection in main-sequence stars through two lenses: dimensionless parameters arising from stellar structure and parameters that emerge from the application of mixing length theory. We first define each quantity in terms familiar to both the 1D stellar evolution community and the hydrodynamics community. We then explore the variation of these quantities across different convection zones, different masses, and different stages of main-sequence evolution. We find immense diversity across stellar convection zones. Convection occurs in thin shells, deep envelopes, and nearly spherical cores; it can be efficient or inefficient, rotationally constrained or not, transsonic or deeply subsonic. This atlas serves as a guide for future theoretical and observational investigations by indicating which regimes of convection are active in a given star, and by describing appropriate model assumptions for numerical simulations.

Show Abstract

Chemodynamical Signatures of Bar Resonances in the Galactic Disk: Current Data and Future Prospects

A. Wheeler , I. Abril-Cabezas, W. H. Trick, F. Fragkoudi, M. Ness

The Galactic disk exhibits complex chemical and dynamical substructure thought to be induced by the bar, spiral arms, and satellites. Here, we explore the chemical signatures of bar resonances in action and velocity space, and characterize the differences between the signatures of corotation (CR) and higher-order resonances using test particle simulations. Thanks to recent surveys, we now have large data sets containing metallicities and kinematics of stars outside the solar neighborhood. We compare the simulations to the observational data from Gaia EDR3 and LAMOST DR5 and find weak evidence for a slow bar with the "hat" moving group (250 km s−1 ≲ vϕ ≲ 270 km s−1) associated with its outer Lindblad resonance and "Hercules" (170 km s−1 ≲ vϕ ≲ 195 km s−1) with CR. While constraints from current data are limited by their spatial footprint, stars closer in azimuth than the Sun to the bar's minor axis show much stronger signatures of the bar's outer Lindblad and CR resonances in test particle simulations. Future data sets with greater azimuthal coverage, including the final Gaia data release, will allow reliable chemodynamical identification of bar resonances.

Show Abstract

Chemodynamical Signatures of Bar Resonances in the Galactic Disk: Current Data and Future Prospects

Adam Wheeler, Irene Abril-Cabezas, Wilma H. Trick, Francesca Fragkoudi, M. Ness

The Galactic disk exhibits complex chemical and dynamical substructure thought to be induced by the bar, spiral arms, and satellites. Here, we explore the chemical signatures of bar resonances in action and velocity space and characterize the differences between the signatures of corotation and higher-order resonances using test particle simulations. Thanks to recent surveys, we now have large datasets containing metallicities and kinematics of stars outside the solar neighborhood. We compare the simulations to the observational data from Gaia EDR3 and LAMOST DR5 and find weak evidence for a slow bar with the "hat" moving group (250 km/s≲vϕ≲270 km/s) associated with its outer Lindblad resonance and "Hercules" (170 km/s≲vϕ≲195 km/s) with corotation. While constraints from current data are limited by their spatial footprint, stars closer in azimuth than the Sun to the bar's minor axis show much stronger signatures of the bar's outer Lindblad and corotation resonances in test particle simulations. Future datasets with greater azimuthal coverage, including the final Gaia data release, will allow reliable chemodynamical identification of bar resonances.

Show Abstract

Generalization and Overfitting in Matrix Product State Machine Learning Architectures

While overfitting and, more generally, double descent are ubiquitous in machine learning, increasing the number of parameters of the most widely used tensor network, the matrix product state (MPS), has generally lead to monotonic improvement of test performance in previous studies. To better understand the generalization properties of architectures parameterized by MPS, we construct artificial data which can be exactly modeled by an MPS and train the models with different number of parameters. We observe model overfitting for one-dimensional data, but also find that for more complex data overfitting is less significant, while with MNIST image data we do not find any signatures of overfitting. We speculate that generalization properties of MPS depend on the properties of data: with one-dimensional data (for which the MPS ansatz is the most suitable) MPS is prone to overfitting, while with more complex data which cannot be fit by MPS exactly, overfitting may be much less significant.

Show Abstract

Transition Rates and Efficiency of Collective Variables from Time-Dependent Biased Simulations

Karen Palacio-Rodriguez, Hadrien Vroylandt, Lukas S. Stelzl, Fabio Pietrucci, Gerhard Hummer, P. Cossio

Simulations with adaptive time-dependent bias enable an efficient exploration of the conformational space of a system. However, the dynamic information is altered by the bias. Infrequent metadynamics recovers the transition rate of crossing a barrier, if the collective variables are ideal and there is no bias deposition near the transition state. Unfortunately, these conditions are not always fulfilled. To overcome these limitations, and inspired by single-molecule force spectroscopy, we use Kramers’ theory for calculating the barrier-crossing rate when a time-dependent bias is added to the system. We assess the efficiency of collective variables parameter by measuring how efficiently the bias accelerates the transitions. We present approximate analytical expressions of the survival probability, reproducing the barrier-crossing time statistics and enabling the extraction of the unbiased transition rate even for challenging cases. We explore the limits of our method and provide convergence criteria to assess its validity.

Show Abstract

The Open Cluster Chemical Abundances and Mapping Survey. VI. Galactic Chemical Gradient Analysis from APOGEE DR17

N. Meyers, J. Donor, T. Spoo, P. M. Frinchaboy, K. Cunha, A. Price-Whelan, S. R. Majewski, R. L. Beaton, G. Zasowski, J. O'Connell, A. E. Ray, D. Bizyaev, C. Chiappini, D. A. García-Hernández, D. Geisler, H. Jönsson, R. R. Lane, P. Longa-Peña, I. Minchev, D. Minniti, C. Nitschelm, A. Roman-Lopes

The goal of the Open Cluster Chemical Abundances and Mapping (OCCAM) survey is to constrain key Galactic dynamic and chemical evolution parameters by the construction and analysis of a large, comprehensive, uniform data set of infrared spectra for stars in hundreds of open clusters. This sixth contribution from the OCCAM survey presents analysis of SDSS/APOGEE Data Release 17 (DR17) results for a sample of stars in 150 open clusters, 94 of which we designate to be "high-quality" based on the appearance of their color–magnitude diagram. We find the APOGEE DR17-derived [Fe/H] values to be in good agreement with those from previous high-resolution spectroscopic open cluster abundance studies. Using a subset of the high-quality sample, the Galactic abundance gradients were measured for 16 chemical elements, including [Fe/H], for both Galactocentric radius (RGC) and guiding center radius (Rguide). We find an overall Galactic [Fe/H] versus RGC gradient of −0.073 ± 0.002 dex kpc−1 over the range of 6 > RGC < 11.5 kpc, and a similar gradient is found for [Fe/H] versus Rguide. Significant Galactic abundance gradients are also noted for O, Mg, S, Ca, Mn, Na, Al, K, and Ce. Our large sample additionally allows us to explore the evolution of the gradients in four age bins for the remaining 15 elements.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates