2573 Publications

Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures

Venugopalan D. Nair , Hanna Pincas, W. Mao , et al.

Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.

Show Abstract

Limitations of mean-field approximations in describing shift-current and injection-current in materials

We theoretically investigate bulk photovoltaic effects, with a specific focus on shift-current and injection-current. Initially, we perform a numerical analysis of the direct current (dc) induced by a laser pulse with a one-dimensional model, utilizing mean-field theories such as time-dependent Hartree--Fock and time-dependent Hartree methods. Our numerical results, obtained with mean-field theories, reveal that the dc component of the current exists even after irradiation with linearly polarized light as a second-order nonlinear effect, indicating the generation of injection current. Conversely, when we employ the independent particle approximation, no injection current is generated by linearly polarized light. To develop the microscopic understanding of injection current within the mean-field approximation, we further analyze the dc component of the current with the perturbation theory, employing the mean-field approximations, the independent-particle approximation, and the exact solution of the many-body Schrödinger equation. The perturbation analysis clarifies that the injection current induced by linearly polarized light under the mean-field approximations is an artifact caused by population imbalance, created through quantum interference from unphysical self-excitation pathways. Therefore, investigation of many-body effects on the bulk photovoltaic effects have to be carefully conducted in mean-field schemes due to potential contamination by unphysical dc current. Additionally, we perform the first-principles electron dynamics calculation for BaTiO3 based on the time-dependent density functional theory, and we confirm that the above findings from the one-dimensional model calculation and the perturbation analysis apply to realistic systems.
Show Abstract
May 1, 2024

Electron-photon exchange-correlation approximation for quantum-electrodynamical density-functional theory

Quantum-electrodynamical density-functional theory (QEDFT) provides a promising avenue for exploring complex light-matter interactions in optical cavities for real materials. Similar to conventional density-functional theory, the Kohn-Sham formulation of QEDFT needs approximations for the generally unknown exchange-correlation functional. In addition to the usual electron-electron exchange-correlation potential, an approximation for the electron-photon exchange-correlation potential is needed. A recent electron-photon exchange functional [C. Schäfer et al., Proc. Natl. Acad. Sci. USA, 118, e2110464118 (2021), this https URL], derived from the equation of motion of the non-relativistic Pauli-Fierz Hamiltonian, shows robust performance in one-dimensional systems across weak- and strong-coupling regimes. Yet, its performance in reproducing electron densities in higher dimensions remains unexplored. Here we consider this QEDFT functional approximation from one to three-dimensional finite systems and across weak to strong light-matter couplings. The electron-photon exchange approximation provides excellent results in the ultra-strong-coupling regime. However, to ensure accuracy also in the weak-coupling regime across higher dimensions, we introduce a computationally efficient renormalization factor for the electron-photon exchange functional, which accounts for part of the electron-photon correlation contribution. These findings extend the applicability of photon-exchange-based functionals to realistic cavity-matter systems, fostering the field of cavity QED (quantum electrodynamics) materials engineering.
Show Abstract
May 1, 2024

Electron-photon exchange-correlation approximation for quantum-electrodynamical density-functional theory

Quantum-electrodynamical density-functional theory (QEDFT) provides a promising avenue for exploring complex light-matter interactions in optical cavities for real materials. Similar to conventional density-functional theory, the Kohn-Sham formulation of QEDFT needs approximations for the generally unknown exchange-correlation functional. In addition to the usual electron-electron exchange-correlation potential, an approximation for the electron-photon exchange-correlation potential is needed. A recent electron-photon exchange functional [C. Schäfer et al., Proc. Natl. Acad. Sci. USA, 118, e2110464118 (2021), this https URL], derived from the equation of motion of the non-relativistic Pauli-Fierz Hamiltonian, shows robust performance in one-dimensional systems across weak- and strong-coupling regimes. Yet, its performance in reproducing electron densities in higher dimensions remains unexplored. Here we consider this QEDFT functional approximation from one to three-dimensional finite systems and across weak to strong light-matter couplings. The electron-photon exchange approximation provides excellent results in the ultra-strong-coupling regime. However, to ensure accuracy also in the weak-coupling regime across higher dimensions, we introduce a computationally efficient renormalization factor for the electron-photon exchange functional, which accounts for part of the electron-photon correlation contribution. These findings extend the applicability of photon-exchange-based functionals to realistic cavity-matter systems, fostering the field of cavity QED (quantum electrodynamics) materials engineering.
Show Abstract
May 1, 2024

Limitations of mean-field approximations in describing shift-current and injection-current in materials

We theoretically investigate bulk photovoltaic effects, with a specific focus on shift-current and injection-current. Initially, we perform a numerical analysis of the direct current (dc) induced by a laser pulse with a one-dimensional model, utilizing mean-field theories such as time-dependent Hartree--Fock and time-dependent Hartree methods. Our numerical results, obtained with mean-field theories, reveal that the dc component of the current exists even after irradiation with linearly polarized light as a second-order nonlinear effect, indicating the generation of injection current. Conversely, when we employ the independent particle approximation, no injection current is generated by linearly polarized light. To develop the microscopic understanding of injection current within the mean-field approximation, we further analyze the dc component of the current with the perturbation theory, employing the mean-field approximations, the independent-particle approximation, and the exact solution of the many-body Schrödinger equation. The perturbation analysis clarifies that the injection current induced by linearly polarized light under the mean-field approximations is an artifact caused by population imbalance, created through quantum interference from unphysical self-excitation pathways. Therefore, investigation of many-body effects on the bulk photovoltaic effects have to be carefully conducted in mean-field schemes due to potential contamination by unphysical dc current. Additionally, we perform the first-principles electron dynamics calculation for BaTiO3 based on the time-dependent density functional theory, and we confirm that the above findings from the one-dimensional model calculation and the perturbation analysis apply to realistic systems.
Show Abstract
May 1, 2024

Dynamical quasicondensation in the weakly interacting Fermi-Hubbard model

We study dynamical (quasi)-condensation in the Fermi-Hubbard model starting from a completely uncorrelated initial state of adjacent doubly occupied sites. We show that upon expansion of the system in one dimension, dynamical (quasi)-condensation occurs not only for large interactions via the condensation of doublons, but also for small interactions. The behavior of the system is distinctly different in the two parameter regimes, underlining a different mechanism at work. We address the question whether the dynamical (quasi-)condensation effect persists in the thermodynamic limit. For this purpose, we use the two-particle reduced density matrix method, which allows the extension to large system sizes, long propagation times, and two-dimensional (2D) systems. Our results indicate that the effect vanishes in the thermodynamic limit. However, especially in 2D, further investigation beyond numerically tractable system sizes calls for the use of quantum simulators, for which we show that the described effect can be investigated by probing density fluctuations.
Show Abstract
May 1, 2024

Semiempirical ab initio modeling of bound states of deep defects in semiconductor quantum technologies

YunHeng Chen, Lachlan Oberg, J. Flick, Artur Lozovoi, Carlos A. Meriles, Marcus W. Doherty

A significant hurdle in developing high-performance semiconductor quantum technologies utilizing deep defects is related to charge dynamics. Unfortunately, progress in modeling their charge dynamics has been hindered over recent decades due to the absence of appropriate multiscale models capable of accurately representing the atomic properties of these defects and their impact on device performance. Here, we present a semi-ab initio method for modeling the bound states of deep defects in semiconductor quantum technologies, applied to the negatively charged nitrogen vacancy (NV−) center in diamond. We employ density functional theory calculations to construct accurate potentials for an effective mass model, which allow us to unveil the structure of the bound hole states. We develop a model to calculate the nonradiative capture cross sections, which agrees with experiment within one order of magnitude. Finally, we present our attempt at constructing the photoionization spectrum of NV0→NV− + bound hole, showing that the electronic transitions of the bound holes can be distinguished from phonon sidebands. This paper offers a practical and efficient solution to a long-standing challenge in understanding the charge dynamics of deep defects.

Show Abstract
May 1, 2024

Microstructure-Based Modeling of Primary Cilia Mechanics

Nima Mostafazadeh, Y.-N. Young, et al.

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets and simulating the tip-anchored optical tweezer experiment on our computational model, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base.

Show Abstract
April 27, 2024

A unified framework for perceived magnitude and discriminability of sensory stimuli

J. Zhou, L. Duong, E. P. Simoncelli

The perception of sensory attributes is often quantified through measurements of sensitivity (the ability to detect small stimulus changes), as well as through direct judgements of appearance or intensity. Despite their ubiquity, the relationship between these two measurements remains controversial and unresolved. Here, we propose a framework in which they arise from different aspects of a common representation. Specifically, we assume that judgements of stimulus intensity (e.g., as measured through rating scales) reflect the mean value of an internal representation, and sensitivity reflects a combination of mean value and noise properties, as quantified by the statistical measure of Fisher Information. Unique identification of these internal representation properties can be achieved by combining measurements of sensitivity and judgments of intensity. As a central example, we show that Weber{\textquoteright}s law of perceptual sensitivity can co-exist with Stevens{\textquoteright} power-law scaling of intensity ratings (for all exponents), when the noise amplitude increases in proportion to the representational mean. We then extend this result beyond the Weber{\textquoteright}s law range by incorporating a more general and physiology-inspired form of noise, and show that the combination of noise properties and sensitivity measurements accurately predicts intensity ratings across a variety of sensory modalities and attributes. Our framework unifies two primary perceptual measurements {\textendash} thresholds for sensitivity and rating scales for intensity {\textendash} and provides a neural interpretation for the underlying representation.Significance Statement Perceptual measurements of sensitivity to stimulus changes and stimulus appearance (intensity) are ubiquitous in the study of perception. However, the relationship between these two seemingly disparate measurements remains unclear. Proposals for unification have been made for over 60 years, but they generally lack support from perceptual or physiological measurements. Here, we provide a framework that offers a unified interpretation of perceptual sensitivity and intensity measurements, and we demonstrate its consistency with experimental measurements across multiple perceptual domains.Competing Interest StatementThe authors have declared no competing interest.

Show Abstract

GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo

N. Bou-Rabee, B. Carpenter, Milo Marsden

We introduce a novel and flexible framework for constructing locally adaptive Hamiltonian Monte Carlo (HMC) samplers by Gibbs sampling the algorithm's tuning parameters conditionally based on the position and momentum at each step. For adaptively sampling path lengths, this framework -- which we call Gibbs self-tuning (GIST) -- encompasses randomized HMC, multinomial HMC, the No-U-Turn Sampler (NUTS), and the Apogee-to-Apogee Path Sampler as special cases. The GIST framework is illustrated with a novel alternative to NUTS for locally adapting path lengths, evaluated with an exact Hamiltonian for a high-dimensional, ill-conditioned Gaussian measure and with the leapfrog integrator for a suite of diverse models.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.