151 Publications

Design principles of Cdr2 node patterns in fission yeast cells

Hannah Opalko , Dimitrios Vavylonis

Pattern-forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle pro-gression and positioning of the cytokinetic ring. Here, we combined experimental and mod-eling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by inves-tigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, in-cluding in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the ab-sence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.

Show Abstract

Hierarchical bubble size distributions in coarsening wet liquid foams

Nicolò Galvani , Douglas J. Durian

Coarsening of two-phase systems is crucial for the stability of dense particle packingssuch as alloys, foams, emulsions, or supersaturated solutions. Mean field theoriespredict an asymptotic scaling state with a broad particle size distribution. Aqueousfoams are good model systems for investigations of coarsening-induced structures,because the continuous liquid as well as the dispersed gas phases are uniform andisotropic. We present coarsening experiments on wet foams, with liquid fractionsup to their unjamming point and beyond, that are performed under microgravity toavoid gravitational drainage. As time elapses, a self-similar regime is reached wherethe normalized bubble size distribution is invariant. Unexpectedly, the distributionfeatures an excess of small roaming bubbles, mobile within the network of jammedlarger bubbles. These roaming bubbles are reminiscent of rattlers in granular materials(grains not subjected to contact forces). We identify a critical liquid fraction흓∗, abovewhich the bubble assembly unjams and the two bubble populations merge into a singlenarrow distribution of bubbly liquids. Unexpectedly,흓∗is larger than the randomclose packing fraction of the foam흓rcp. This is because, between흓rcpand흓∗, the largebubbles remain connected due to a weak adhesion between bubbles. We present modelsthat identify the physical mechanisms explaining our observations. We propose a newcomprehensive view of the coarsening phenomenon in wet foams. Our results shouldbe applicable to other phase-separating systems and they may also help to control theelaboration of solid foams with hierarchical structures

Show Abstract
September 14, 2023

Clustering of cortical dynein regulates the mechanics of spindle orientation in human mitotic cells

Maya I. Anjur-Dietrich, Vicente Gomez Hererra, R. Farhadifar, M. Shelley, D. Needleman, et al

The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle’s measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle’s resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.

Show Abstract
September 12, 2023

Liquid Filled Elastomers: From Linearization to Elastic Enhancement

Juan Casado Dìaz , G. Francfort, Oscar Lopez-Pamies, Maria Giovanna Mora

Surface tension at cavity walls can play havoc with the mechanical properties of perforated soft solids when the cavities are filled with a fluid. This study is an investigation of the macroscopic elastic properties of elastomers embedding spherical cavities filled with a pressurized liquid in the presence of surface tension, starting with the linearization of the fully nonlinear model and ending with the enhancement properties of the linearized model when many such liquid filled cavities are present.

Show Abstract
September 7, 2023

Multi-Task Curriculum Learning for Partially Labeled Data

Won-Dong Jang, D. Needleman, et al

Incomplete labels are common in multi-task learning for biomedical applications due to several practical difficulties, e.g., expensive annotation efforts by experts, limit of data collection, different sources of data. A naive approach to enable joint learning for partially labeled data is adding self-supervised learning for tasks without ground truths by augmenting an input image and forcing the multi-task model to return the same outputs for both the input and augmented images. However, the partially labeled setting can result in imbalanced learning of tasks since not all tasks are trainable with ground truth supervisions for each data sample. In this work, we propose a multi-task curriculum learning method tailored for partially labeled data. For balanced learning of tasks, our multitask curriculum prioritizes less performing tasks during training by setting different supervised learning frequencies for each task. We demonstrate that our method outperforms standard approaches on one biomedical and two natural image datasets. Furthermore, our learning method with partially labeled data performs better than the standard multi-task learning methods with fully labeled data for the same number of annotations.

Show Abstract

Learning Vector Quantized Shape Code for Amodal Blastomere Instance Segmentation

Won-Dong Jang, D. Needleman, et al.

Blastomere instance segmentation is important for analyzing embryos’ abnormality. To measure the accurate shapes and sizes of blastomeres, their amodal segmentation is necessary. Amodal instance segmentation aims to recover an object’s complete silhouette even when the object is not fully visible. For each detected object, previous methods directly regress the target mask from input features. However, images of an object under different amounts of occlusion should have the same amodal mask output, making it harder to train the regression model. To alleviate the problem, we propose to classify input features into intermediate shape codes and recover complete object shapes. First, we pre-train the Vector Quantized Variational Autoencoder (VQ-VAE) model to learn these discrete shape codes from ground truth amodal masks. Then, we incorporate the VQ-VAE model into the amodal instance segmentation pipeline with an additional refinement module. We also detect an occlusion map to integrate occlusion information with a backbone feature. As such, our network faithfully detects bounding boxes of amodal objects. On an internal embryo cell image benchmark, the proposed method outperforms previous state-of-the-art methods. To show generalizability, we show segmentation results on the public KINS natural image benchmark. Our method would enable accurate measurement of blastomeres in In Vitro Fertilization (IVF) clinics, potentially increasing the IVF success rate.

Show Abstract

Discontinuous instabilities in disordered solids

Ding Xu , Andrea J. Liu, et al.

Under a sufficiently large load, a solid material will flow via rearrangements, where particles change neighbors. Such plasticity is most easily described in the athermal, quasistatic limit of zero temperature and infinitesimal loading rate, where rearrangements occur only when the system becomes mechanically unstable. For disordered solids, the instabilities marking the onset of rearrangements have long been believed to be fold instabilities, in which an energy barrier disappears and the frequency of a normal mode of vibration vanishes continuously. Here, we report that there exists another, anomalous, type of instability caused by the breaking of a “stabilizing bond,” whose removal creates an unstable vibrational mode. For commonly studied systems, such as those with harmonic finite-range interparticle interactions, such “discontinuous instabilities” are not only inevitable, they often dominate the modes of failure. Stabilizing bonds are a subset of all the bonds in the system and are prevalent in disordered solids generally. Although they do not trigger discontinuous instabilities in systems with vanishing stiffness at the interaction cutoff, they are, even in those cases, local indicators of incipient mechanical failure. They therefore provide an accurate structural predictor of instabilities not only of the discontinuous type but of the fold type as well.

Show Abstract
August 16, 2023

Learning fast, accurate, and stable closures of a kinetic theory of an active fluid

Important classes of active matter systems can be modeled using kinetic theories. However, kinetic theories can be high dimensional and challenging to simulate. Reduced-order representations based on tracking only low-order moments of the kinetic model serve as an efficient alternative, but typically require closure assumptions to model unrepresented higher-order moments. In this study, we present a learning framework based on neural networks that exploit rotational symmetries in the closure terms to learn accurate closure models directly from kinetic simulations. The data-driven closures demonstrate excellent a-priori predictions comparable to the state-of-the-art Bingham closure. We provide a systematic comparison between different neural network architectures and demonstrate that nonlocal effects can be safely ignored to model the closure terms. We develop an active learning strategy that enables accurate prediction of the closure terms across the entire parameter space using a single neural network without the need for retraining. We also propose a data-efficient training procedure based on time-stepping constraints and a differentiable pseudo-spectral solver, which enables the learning of stable closures suitable for a-posteriori inference. The coarse-grained simulations equipped with data-driven closure models faithfully reproduce the mean velocity statistics, scalar order parameters, and velocity power spectra observed in simulations of the kinetic theory. Our differentiable framework also facilitates the estimation of parameters in coarse-grained descriptions conditioned on data.

Show Abstract
August 13, 2023

Learning locally dominant force balances in active particle systems

Dominik Sturm, S. Maddu, Ivo F. Sbalzarini

We use a combination of unsupervised clustering and sparsity-promoting inference algorithms to learn locally dominant force balances that explain macroscopic pattern formation in self-organized active particle systems. The self-organized emergence of macroscopic patterns from microscopic interactions between self-propelled particles can be widely observed nature. Although hydrodynamic theories help us better understand the physical basis of this phenomenon, identifying a sufficient set of local interactions that shape, regulate, and sustain self-organized structures in active particle systems remains challenging. We investigate a classic hydrodynamic model of self-propelled particles that produces a wide variety of patterns, like asters and moving density bands. Our data-driven analysis shows that propagating bands are formed by local alignment interactions driven by density gradients, while steady-state asters are shaped by a mechanism of splay-induced negative compressibility arising from strong particle interactions. Our method also reveals analogous physical principles of pattern formation in a system where the speed of the particle is influenced by local density. This demonstrates the ability of our method to reveal physical commonalities across models. The physical mechanisms inferred from the data are in excellent agreement with analytical scaling arguments and experimental observations.

Show Abstract
July 27, 2023

Microstructure-Based Modeling of Primary Cilia Mechanics

Nima Mostafazadeh, Y.-N. Young, et al.

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates