298 Publications

Gauge equivariant neural networks for quantum lattice gauge theories

Di Luo, G. Carleo, Bryan K. Clark, J. Stokes

Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials. Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced, which exactly satisfy the local Hilbert space constraints necessary for the description of quantum lattice gauge theory with Zd gauge group on different geometries. Focusing on the special case of Z2 gauge group on a periodically identified square lattice, the equivariant architecture is analytically shown to contain the loop-gas solution as a special case. Gauge equivariant neural-network quantum states are used in combination with variational quantum Monte Carlo to obtain compact descriptions of the ground state wavefunction for the Z2 theory away from the exactly solvable limit, and to demonstrate the confining/deconfining phase transition of the Wilson loop order parameter.

Show Abstract

FMM-accelerated solvers for the Laplace-Beltrami problem on complex surfaces in three dimensions

Dhwanit Agarwal, Michael O'Neil, M. Rachh

The Laplace-Beltrami problem on closed surfaces embedded in three dimensions arises in many areas of physics, including molecular dynamics (surface diffusion), electromagnetics (harmonic vector fields), and fluid dynamics (vesicle deformation). Using classical potential theory,the Laplace-Beltrami operator can be pre-/post-conditioned with integral operators whose kernel is translation invariant, resulting in well-conditioned Fredholm integral equations of the second-kind. These equations have the standard Laplace kernel from potential theory, and therefore the equations can be solved rapidly and accurately using a combination of fast multipole methods (FMMs) and high-order quadrature corrections. In this work we detail such a scheme, presenting two alternative integral formulations of the Laplace-Beltrami problem, each of whose solution can be obtained via FMM acceleration. We then present several applications of the solvers, focusing on the computation of what are known as harmonic vector fields, relevant for many applications in electromagnetics. A battery of numerical results are presented for each application, detailing the performance of the solver in various geometries.

Show Abstract
November 21, 2021

A Normative and Biologically Plausible Algorithm for Independent Component Analysis

The brain effortlessly solves blind source separation (BSS) problems, but the algorithm it uses remains elusive. In signal processing, linear BSS problems are often solved by Independent Component Analysis (ICA). To serve as a model of a biological circuit, the ICA neural network (NN) must satisfy at least the following requirements: 1. The algorithm must operate in the online setting where data samples are streamed one at a time, and the NN computes the sources on the fly without storing any significant fraction of the data in memory. 2. The synaptic weight update is local, i.e., it depends only on the biophysical variables present in the vicinity of a synapse. Here, we propose a novel objective function for ICA from which we derive a biologically plausible NN, including both the neural architecture and the synaptic learning rules. Interestingly, our algorithm relies on modulating synaptic plasticity by the total activity of the output neurons. In the brain, this could be accomplished by neuromodulators, extracellular calcium, local field potential, or nitric oxide.

Show Abstract

Shadow tomography based on informationally complete positive operator-valued measure

Atithi Acharya, Siddhartha Saha, A. Sengupta

Recently introduced shadow tomography protocols use “classical shadows” of quantum states to predict many target functions of an unknown quantum state. Unlike full quantum state tomography, shadow tomography does not insist on accurate recovery of the density matrix for high rank mixed states. Yet, such a protocol makes multiple accurate predictions with high confidence, based on a moderate number of quantum measurements. One particular influential algorithm, proposed by Huang et al. [Huang, Kueng, and Preskill, Nat. Phys. 16, 1050 (2020)], requires additional circuits for performing certain random unitary transformations. In this paper, we avoid these transformations but employ an arbitrary informationally complete positive operator-valued measure and show that such a procedure can compute k-bit correlation functions for quantum states reliably. We also show that, for this application, we do not need the median of means procedure of Huang et al. Finally, we discuss the contrast between the computation of correlation functions and fidelity of reconstruction of low rank density matrices.

Show Abstract

Encoding Priors with Group Sparsity for Model Learning From Limited and Noisy Biological Data

Suryanarayana Maddu, Dominik Sturm, Bevan L Cheeseman, C. Müller, Ivo F Sbalzarini

Numerical methods for approximately solving partial differential equations (PDE) are at the core of scientific computing. Often, this requires high-resolution or adaptive discretization grids to capture relevant spatio-temporal features in the PDE solution, e.g., in applications like turbulence, combustion, and shock propagation. Numerical approximation also requires knowing the PDE in order to construct problem-specific discretizations. Systematically deriving such solution-adaptive discrete operators, however, is a current challenge. Here we present an artificial neural network architecture for data-driven learning of problemand resolution-specific local discretizations of nonlinear PDEs. Our proposed method achieves numerically stable discretization of the operators in an unknown nonlinear PDE by spatially and temporally adaptive parametric pooling on regular Cartesian grids, and by incorporating knowledge about discrete time integration. Knowing the actual PDE is not necessary, as solution data is sufficient to train the network to learn the discrete operators. A once-trained neural architecture model can be used to predict solutions of the PDE on larger spatial domains and for longer times than it was trained for, hence addressing the problem of PDE-constrained extrapolation from data. We present demonstrative examples on long-term forecasting of hard numerical problems including equation-free forecasting of non-linear dynamics of forced Burgers problem on coarse spatio-temporal grids.

Show Abstract

Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition

Wendy Hui Kyong Chun, A. Barnett

mathematical illustrations by Alex H. Barnett: In Discriminating Data, Wendy Hui Kyong Chun reveals how polarization is a goal—not an error—within big data and machine learning. These methods, she argues, encode segregation, eugenics, and identity politics through their default assumptions and conditions. Correlation, which grounds big data's predictive potential, stems from twentieth-century eugenic attempts to “breed” a better future. Recommender systems foster angry clusters of sameness through homophily. Users are “trained” to become authentically predictable via a politics and technology of recognition. Machine learning and data analytics thus seek to disrupt the future by making disruption impossible.

Show Abstract

Analysis of single-excitation states in quantum optics

Jeremy Hoskins, J. Kaye, M. Rachh, John Schotland

In this paper we analyze the dynamics of single-excitation states, which model the scattering of a single photon from multiple two level atoms. For short times and weak atom-field couplings we show that the atomic amplitudes are given by a sum of decaying exponentials, where the decay rates and Lamb shifts are given by the poles of a certain analytic function. This result is a refinement of the "pole approximation" appearing in the standard Wigner-Weisskopf analysis of spontaneous emission. On the other hand, at large times, the atomic field decays like O(1/t3) with a known constant expressed in terms of the coupling parameter and the resonant frequency of the atoms. Moreover, we show that for stronger coupling, the solutions also feature a collection of oscillatory exponentials which dominate the behavior at long times. Finally, we extend the analysis to the continuum limit in which atoms are distributed according to a given density.

Show Abstract
October 13, 2021

Cardiolipin prevents pore formation in phosphatidylglycerol bacterial membrane models

Cristian Rocha-Roa, Juan David Orjuela, Chad Leidy, P. Cossio, Camilo Aponte-Santamaría

Abstract Several antimicrobial peptides, including magainin and the human cathelicidin LL-37, act by forming pores in bacterial membranes. Bacteria such as Staphylococcus aureus modify their membrane's cardiolipin composition to resist such types of perturbations that compromise their membrane stability. Here, we used molecular dynamics simulations to quantify the role of cardiolipin on the formation of pores in simple bacterial-like membrane models composed of phosphatidylglycerol and cardiolipin mixtures. Cardiolopin modified the structure and ordering of the lipid bilayer, making it less susceptible to mechanical changes. Accordingly, the free-energy barrier for the formation of a transmembrane pore and its kinetic instability augmented by increasing the cardiolipin concentration. This is attributed to the unfavorable positioning of cardiolipin near the formed pore, due to its small polar-head and bulky hydrophobic-body. Overall, our study demonstrates how cardiolipin prevents membrane-pore formation and this constitutes a plausible mechanism used by bacteria to act against stress perturbations and, thereby, gain resistance to antimicrobial agents.

Show Abstract
October 11, 2021

Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions

The efficiency of Hamiltonian Monte Carlo (HMC) can suffer when sampling a distribution with a wide range of length scales, because the small step sizes needed for stability in high-curvature regions are inefficient elsewhere. To address this we present a delayed rejection variant: if an initial HMC trajectory is rejected, we make one or more subsequent proposals each using a step size geometrically smaller than the last. We extend the standard delayed rejection framework by allowing the probability of a retry to depend on the probability of accepting the previous proposal. We test the scheme in several sampling tasks, including multiscale model distributions such as Neal's funnel, and statistical applications. Delayed rejection enables up to five-fold performance gains over optimally-tuned HMC, as measured by effective sample size per gradient evaluation. Even for simpler distributions, delayed rejection provides increased robustness to step size misspecification. Along the way, we provide an accessible but rigorous review of detailed balance for HMC.

Show Abstract
October 1, 2021
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates