298 Publications

Perturbational Complexity by Distribution Mismatch: A Systematic Analysis of Reinforcement Learning in Reproducing Kernel Hilbert Space

Jihao Long, J. Han

Most existing theoretical analysis of reinforcement learning (RL) is limited to the tabular setting or linear models due to the difficulty in dealing with function approximation in high dimensional space with an uncertain environment. This work offers a fresh perspective into this challenge by analyzing RL in a general reproducing kernel Hilbert space (RKHS). We consider a family of Markov decision processes $\mathcal{M}$ of which the reward functions lie in the unit ball of an RKHS and transition probabilities lie in a given arbitrary set. We define a quantity called perturbational complexity by distribution mismatch $\Delta_{\mathcal{M}}(\epsilon)$ to characterize the complexity of the admissible state-action distribution space in response to a perturbation in the RKHS with scale $\epsilon$. We show that $\Delta_{\mathcal{M}}(\epsilon)$ gives both the lower bound of the error of all possible algorithms and the upper bound of two specific algorithms (fitted reward and fitted Q-iteration) for the RL problem. Hence, the decay of $\Delta_\mathcal{M}(\epsilon)$ with respect to $\epsilon$ measures the difficulty of the RL problem on $\mathcal{M}$. We further provide some concrete examples and discuss whether $\Delta_{\mathcal{M}}(\epsilon)$ decays fast or not in these examples. As a byproduct, we show that when the reward functions lie in a high dimensional RKHS, even if the transition probability is known and the action space is finite, it is still possible for RL problems to suffer from the curse of dimensionality.

Show Abstract

Pandemic Control, Game Theory, and Machine Learning

Yao Xuan, Robert Balkin, J. Han, Ruimeng Hu, Hector D Ceniceros

Game theory has been an effective tool in the control of disease spread and in suggesting optimal policies at both individual and area levels. In this AMS Notices article, we focus on the decision-making development for the intervention of COVID-19, aiming to provide mathematical models and efficient machine learning methods, and justifications for related policies that have been implemented in the past and explain how the authorities' decisions affect their neighboring regions from a game theory viewpoint.

Show Abstract

RidgeSketch: A Fast Sketching Based Solver for Large Scale Ridge Regression

Nidham Gazagnadou, Mark Ibrahim, R. M. Gower

We propose new variants of the sketch-and-project method for solving large scale ridge regression problems. First, we propose a new momentum alternative and provide a theorem showing it can speed up the convergence of sketch-and-project, through a fast sublinear convergence rate. We carefully delimit under what settings this new sublinear rate is faster than the previously known linear rate of convergence of sketch-and-project without momentum. Second, we consider combining the sketch-and-project method with new modern sketching methods such as Count sketch, SubCount sketch (a new method we propose), and subsampled Hadamard transforms. We show experimentally that when combined with the sketch-and-project method, the (Sub)Count sketch is very effective on sparse data and the standard Subsample sketch is effective on dense data. Indeed, we show that these sketching methods, combined with our new momentum scheme, result in methods that are competitive even when compared to the conjugate gradient method on real large scale data. On the contrary, we show the subsampled Hadamard transform does not perform well in this setting, despite the use of fast Hadamard transforms, and nor do recently proposed acceleration schemes work well in practice. To support all of our experimental findings, and invite the community to validate and extend our results, with this paper we are also releasing an open source software package: RidgeSketch. We designed this object-oriented package in Python for testing sketch-and-project methods and benchmarking ridge regression solvers. RidgeSketch is highly modular, and new sketching methods can easily be added as subclasses. We provide code snippets of our package in the appendix.

Show Abstract

Geometry of the Phase Retrieval Problem: Graveyard of Algorithms

Recovering the phase of the Fourier transform is a ubiquitous problem in imaging applications from astronomy to nanoscale X-ray diffraction imaging. Despite the efforts of a multitude of scientists, from astronomers to mathematicians, there is, as yet, no satisfactory theoretical or algorithmic solution to this class of problems. Written for mathematicians, physicists and engineers working in image analysis and reconstruction, this book introduces a conceptual, geometric framework for the analysis of these problems, leading to a deeper understanding of the essential, algorithmically independent, difficulty of their solutions. Using this framework, the book studies standard algorithms and a range of theoretical issues in phase retrieval and provides several new algorithms and approaches to this problem with the potential to improve the reconstructed images. The book is lavishly illustrated with the results of numerous numerical experiments that motivate the theoretical development and place it in the context of practical applications.

Show Abstract

DeepHAM: A Global Solution Method for Heterogeneous Agent Models with Aggregate Shocks

J. Han, Yucheng Yang, Weinan E

An efficient, reliable, and interpretable global solution method, the Deep learning-based algorithm for Heterogeneous Agent Models (DeepHAM), is proposed for solving high dimensional heterogeneous agent models with aggregate shocks. The state distribution is approximately represented by a set of optimal generalized moments. Deep neural networks are used to approximate the value and policy functions, and the objective is optimized over directly simulated paths. In addition to being an accurate global solver, this method has three additional features. First, it is computationally efficient in solving complex heterogeneous agent models, and it does not suffer from the curse of dimensionality. Second, it provides a general and interpretable representation of the distribution over individual states, which is crucial in addressing the classical question of whether and how heterogeneity matters in macroeconomics. Third, it solves the constrained efficiency problem as easily as it solves the competitive equilibrium, which opens up new possibilities for studying optimal monetary and fiscal policies in heterogeneous agent models with aggregate shocks.

Show Abstract
December 29, 2021

A Weighted State Redistribution Algorithm for Embedded Boundary Grids

Andrew Giuliani, Ann S. Almgren, John B. Bell, M. Berger, Marc T. Henry Frahan, Deepak Rangarajan

State redistribution is an algorithm that stabilizes cut cells for embedded boundary grid methods. This work extends the earlier algorithm in several important ways. First, state redistribution is extended to three spatial dimensions. Second, we discuss several algorithmic changes and improvements motivated by the more complicated cut cell geometries that can occur in higher dimensions. In particular, we introduce a weighted version with less dissipation. Third, we demonstrate that state redistribution can also stabilize a solution update that includes both advective and diffusive contributions. The stabilization algorithm is shown to be effective for incompressible as well as compressible reacting flows. Finally, we discuss the implementation of the algorithm for several exascale-ready simulation codes based on AMReX, demonstrating ease of use in combination with domain decomposition, hybrid parallelism and complex physics.

Show Abstract
December 23, 2021

Multifrequency inverse obstacle scattering with unknown impedance boundary conditions using recursive linearization

Carlos Borges, M. Rachh

In this paper, we consider the reconstruction of the shape and the impedance function of an obstacle from measurements of the scattered field at a collection of receivers outside the object. The data is assumed to be generated by plane waves impinging on the unknown obstacle from multiple directions and at multiple frequencies. This inverse problem can be reformulated as an optimization problem: that of finding band-limited shape and impedance functions which minimize the L2 distance between the computed value of the scattered field at the receivers and the given measurement data. The optimization problem is highly non-linear, non-convex, and ill-posed. Moreover, the objective function is computationally expensive to evaluate (since a large number of Helmholtz boundary value problems need to be solved at every iteration in the optimization loop). The recursive linearization approach (RLA) proposed by Chen has been successful in addressing these issues in the context of recovering the sound speed of an inhomogeneous object or the shape of a sound-soft obstacle. We present an extension of the RLA for the recovery of both the shape and impedance functions of the object. The RLA is, in essence, a continuation method in frequency where a sequence of single frequency inverse problems is solved. At each higher frequency, one attempts to recover incrementally higher resolution features using a step assumed to be small enough to ensure that the initial guess obtained at the preceding frequency lies in the basin of attraction for Newton’s method at the new frequency. We demonstrate the effectiveness of this approach with several numerical examples. Surprisingly, we find that one can recover the shape with high accuracy even when the measurements are generated by sound-hard or sound-soft objects, eliminating the need to know the precise boundary conditions appropriate for modeling the object under consideration. While the method is effective in obtaining high-quality reconstructions for many complicated geometries and impedance functions, a number of interesting open questions remain regarding the convergence behavior of the approach. We present numerical experiments that suggest underlying mechanisms of success and failure, pointing out areas where improvements could help lead to robust and automatic tools for the solution of inverse obstacle scattering problems.

Show Abstract

Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning

Weinan E, J. Han, Arnulf Jentzen

In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many different applications and have been proven to be so in the case of some nonlinear Monte Carlo methods for nonlinear parabolic PDEs. In this paper, we review these numerical and theoretical advances. In addition to algorithms based on stochastic reformulations of the original problem, such as the multilevel Picard iteration and the deep backward stochastic differential equations method, we also discuss algorithms based on the more traditional Ritz, Galerkin, and least square formulations. We hope to demonstrate to the reader that studying PDEs as well as control and variational problems in very high dimensions might very well be among the most promising new directions in mathematics and scientific computing in the near future.

Show Abstract

Neural optimal feedback control with local learning rules

D. Chklovskii, S. Golkar, S. Farashahi, J. Friedrich, A. Genkin, A. Sengupta

A major problem in motor control is understanding how the brain plans and executes proper movements in the face of delayed and noisy stimuli. A prominent framework for addressing such control problems is Optimal Feedback Control (OFC). OFC generates control actions that optimize behaviorally relevant criteria by integrating noisy sensory stimuli and the predictions of an internal model using the Kalman filter or its extensions. However, a satisfactory neural model of Kalman filtering and control is lacking because existing proposals have the following limitations: not considering the delay of sensory feedback, training in alternating phases, and requiring knowledge of the noise covariance matrices, as well as that of systems dynamics. Moreover, the majority of these studies considered Kalman filtering in isolation, and not jointly with control. To address these shortcomings, we introduce a novel online algorithm which combines adaptive Kalman filtering with a model free control approach (i.e., policy gradient algorithm). We implement this algorithm in a biologically plausible neural network with local synaptic plasticity rules. This network performs system identification and Kalman filtering, without the need for multiple phases with distinct update rules or the knowledge of the noise covariances. It can perform state estimation with delayed sensory feedback, with the help of an internal model. It learns the control policy without requiring any knowledge of the dynamics, thus avoiding the need for weight transport. In this way, our implementation of OFC solves the credit assignment problem needed to produce the appropriate sensory-motor control in the presence of stimulus delay.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates