2005 Publications

Stellar Abundance Maps of the Milky Way Disk

A-C. Eilers, D. Hogg, H-W. Rix, M. Ness, A. Price-Whelan, S. Mészáros, C. Nitschelm

To understand the formation of the Milky Way's prominent bar it is important to know whether stars in the bar differ in the chemical element composition of their birth material as compared to disk stars. This requires stellar abundance measurements for large samples across the Milky Way's body. Such samples, e.g., luminous red giant stars observed by the Sloan Digital Sky Survey's APOGEE survey, will inevitably span a range of stellar parameters; as a consequence, both modeling imperfections and stellar evolution may preclude consistent and precise estimates of their chemical composition at a level of purported bar signatures, which has left current analyses of a chemically distinct bar inconclusive. Here, we develop a new self-calibration approach to eliminate both modeling and astrophysical abundance systematics among red giant branch (RGB) stars of different luminosities (and hence surface gravity $\mathrm{log}g$). We apply our method to 48,853 luminous APOGEE Data Release 16 RGB stars to construct spatial abundance maps of 20 chemical elements near the Milky Way's mid-plane, covering galactocentric radii of 0 kpc < RGC < 20 kpc. Our results indicate that there are no abundance variations whose geometry matches that of the bar, and that the mean abundance gradients vary smoothly and monotonically with galactocentric radius. We confirm that the high-α disk is chemically homogeneous, without spatial gradients. Furthermore, we present the most precise [Fe/H] versus RGC gradient to date with a slope of − 0.057 ±0.001 dex kpc−1 out to approximately 15 kpc.

Show Abstract

Turning points in the age–metallicity relations – created by late satellite infall and enhanced by radial migration

Y. (Lucy) Lu, M. Ness, T. Buck, C. Carr

The present-day age–metallicity relation (AMR) is a record of the star formation history of galaxies, as this traces the chemical enrichment of the gas over time. We use a zoomed-in cosmological simulation that reproduces key signatures of the Milky Way (MW), g2.79e12 from the NIHAO-UHD project, to examine how stellar migration and satellite infall shape the AMR across the disc. We find in the simulation, similar to the MW, the AMR in small spatial regions (R, z) shows turning points that connect changes in the direction of the relations. The turning points in the AMR in the simulation are a signature of late satellite infall. This satellite infall has a mass radio similar as that of the Sagittarius dwarf to the MW (∼0.001). Stars in the apex of the turning points are young and have nearly not migrated. The late satellite infall creates the turning points via depositing metal-poor gas in the disc, triggering star formation of stars in a narrow metallicity range compared to the overall AMR. The main effect of radial migration on the AMR turning points is to widen the metallicity range of the apex. This can happen when radial migration brings stars born from the infallen gas in other spatial bins, with slightly different metallicities, into the spatial bin of interest. These results indicate that it is possible that the passage of the Sagittarius dwarf galaxy played a role in creating the turning points that we see in the AMR in the Milky Way.

Show Abstract

Boundary layers of accretion discs: wave-driven transport and disc evolution

Matthew S. B. Coleman, Roman R. Rafikov, S. Philippov

Astrophysical objects possessing a material surface (white dwarfs, young stars, etc.) may accrete gas from the disc through the so-called surface boundary layer (BL), in which the angular velocity of the accreting gas experiences a sharp drop. Acoustic waves excited by the supersonic shear in the BL play an important role in mediating the angular momentum and mass transport through that region. Here we examine the characteristics of the angular momentum transport produced by the different types of wave modes emerging in the inner disc, using the results of a large suite of hydrodynamic simulations of the BLs. We provide a comparative analysis of the transport properties of different modes across the range of relevant disc parameters. In particular, we identify the types of modes which are responsible for the mass accretion onto the central object. We find the correlated perturbations of surface density and radial velocity to provide an important contribution to the mass accretion rate. Although the wave-driven transport is intrinsically non-local, we do observe a clear correlation between the angular momentum flux injected into the disc by the waves and the mass accretion rate through the BL. We find the efficiency of angular momentum transport (normalized by thermal pressure) to be a weak function of the flow Mach number. We also quantify the wave-driven evolution of the inner disc, in particular the modification of the angular frequency profile in the disc. Our results pave the way for understanding wave-mediated transport in future three-dimensional, magnetohydrodynamic studies of the BLs.

Show Abstract

Controlling the shape and topology of two-component colloidal membranes

A. Khanra, L. Jia, N. P. Mitchell, A. Balchunas, R. A. Pelcovits, T. R. Powers, Z. Dogic, P. Sharma

Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes have in-plane fluid-like dynamics and out-of-plane bending elasticity. Their open edges and micron length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. Here, we find that doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped surfaces with complex edge structures. The saddle-shaped membranes are well-approximated by Enneper's minimal surfaces. Theoretical modeling demonstrates that their formation is driven by increasing positive Gaussian modulus, which in turn is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to diverse topologically distinct structures, including catenoids, tri-noids, four-noids, and higher order structures. At long time scales, we observe the formation of a system-spanning, sponge-like phase. The unique features of colloidal membranes reveal the topological transformations that accompany coalescence pathways in real time. We enhance the functionality of these membranes by making their shape responsive to external stimuli. Our results demonstrate a novel pathway towards control of thin elastic sheets' shape and topology -- a pathway driven by the emergent elasticity induced by compositional heterogeneity.

Show Abstract
March 14, 2022

Deconstructing gastrulation at single-cell resolution

T. Stern, S. Shvartsman, E. F. Wieschaus

Gastrulation movements in all animal embryos start with regulated deformations of patterned epithelial sheets, which are driven by cell divisions, cell shape changes, and cell intercalations. Each of these behaviors has been associated with distinct aspects of gastrulation and has been a subject of intense research using genetic, cell biological, and more recently, biophysical approaches. Most of these studies, however, focus either on cellular processes driving gastrulation or on large-scale tissue deformations. Recent advances in microscopy and image processing create a unique opportunity for integrating these complementary viewpoints. Here, we take a step toward bridging these complementary strategies and deconstruct the early stages of gastrulation in the entire Drosophila embryo. Our approach relies on an integrated computational framework for cell segmentation and tracking and on efficient algorithms for event detection. The detected events are then mapped back onto the blastoderm shell, providing an intuitive visual means to examine complex cellular activity patterns within the context of their initial anatomic domains. By analyzing these maps, we identified that the loss of nearly half of surface cells to invaginations is compensated primarily by transient mitotic rounding. In addition, by analyzing mapped cell intercalation events, we derived direct quantitative relations between intercalation frequency and the rate of axis elongation. This work is setting the stage for systems-level dissection of a pivotal step in animal development.

Show Abstract
March 14, 2022

Thermodynamically consistent coarse-graining of polar active fluids

Scott Weady, D. Stein, M. Shelley

We introduce a closure model for coarse-grained kinetic theories of polar active fluids. Based on a thermodynamically consistent, quasi-equilibrium approximation of the particle distribution function, the model closely captures important analytical properties of the kinetic theory, including its linear stability and the balance of entropy production and dissipation. Nonlinear simulations show the model reproduces the qualitative behavior and nonequilibrium statistics of the kinetic theory, unlike commonly used closure models. We use the closure model to simulate highly turbulent suspensions in both two and three dimensions in which we observe complex multiscale dynamics, including large concentration fluctuations and a proliferation of polar and nematic defects.

Show Abstract
March 11, 2022

Weighing the Galactic disk using phase-space spirals

A. Widmark, J. Hunt, C. Laporte, G. Monari

In this fourth article on weighing the Galactic disk using the shape of the phase-space spiral, we have tested our method on a billion particle three-dimensional N-body simulation, comprised of a Milky Way like host galaxy and a merging dwarf satellite. The main purpose of this work was to test the validity of our model’s fundamental assumptions that the spiral inhabits a locally static and vertically separable gravitational potential. These assumptions might be compromised in the complex kinematic system of a disturbed three-dimensional disk galaxy; in fact, the statistical uncertainty and any potential biases related to these assumptions are expected to be amplified for this simulation, which differs from the Milky Way in that it is more strongly perturbed and has a phase-space spiral that inhabits higher vertical energies. We constructed 44 separate data samples from different spatial locations in the simulated host galaxy. Our method produced accurate results for the vertical gravitational potential of these 44 data samples, with an unbiased distribution of errors with a standard deviation of 7 percent. We also tested our method under severe and unknown spatially dependent selection effects, also with robust results; this sets it apart from traditional dynamical mass measurements that are based on the assumption of a steady state and which are highly sensitive to unknown or poorly modelled incompleteness. Hence, we will be able to make localised mass measurements of distant regions in the Milky Way disk, which would otherwise be compromised by complex and poorly understood selection effects.

Show Abstract

Exploring the Sgr–Milky Way–disk Interaction Using High-resolution N-body Simulations

M. Bennett, J. Bovy, J. Hunt

The ongoing merger of the Sagittarius (Sgr) dwarf galaxy with the Milky Way is believed to strongly affect the dynamics of the Milky Way's disk. We present a suite of 13 N-body simulations, with 500 million–1 billion particles, modeling the interaction between the Sgr dwarf galaxy and the Galactic disk. To quantify the perturbation to the disk's structure and dynamics in the simulation, we compute the number count asymmetry and the mean vertical velocity in a solar-neighborhood-like volume. We find that, overall, the trends in the simulations match those seen in a simple one-dimensional model of the interaction. We explore the effects of changing the mass model of Sgr, the orbital kinematics of Sgr, and the mass of the Milky Way halo. We find that none of the simulations match the observations of the vertical perturbation using Gaia Data Release 2. In the simulation that is the most similar, we find that the final mass of Sgr far exceeds the observed mass of the Sgr remnant, the asymmetry wavelength is too large, and the shape of the asymmetry does not match past z ≈ 0.7 kpc. We therefore conclude that our simulations support the conclusion that Sgr alone could not have caused the observed perturbation to the solar neighborhood.

Show Abstract

Similarities behind the high- and low-α disc: small intrinsic abundance scatter and migrating stars

Y. (Lucy) Lu, M. Ness, T. Buck, J. C. Zinn, K. Johnston

The detailed age-chemical abundance relations of stars measure time-dependent chemical evolution. These trends offer strong empirical constraints on nucleosynthetic processes, as well as the homogeneity of star-forming gas. Characterizing chemical abundances of stars across the Milky Way over time has been made possible very recently, thanks to surveys like Gaia, APOGEE, and Kepler. Studies of the low-α disc have shown that individual elements have unique age–abundance trends and the intrinsic dispersion around these relations is small. In this study, we examine and compare the age distribution of stars across both the high and low-α disc and quantify the intrinsic dispersion of 16 elements around their age–abundance relations at [Fe/H] = 0 using APOGEE DR16. We examine the age–metallicity relation and visualize the temporal and spatial distribution of disc stars in small chemical cells. We find: (1) the high-α disc has shallower age–abundance relations compared to the low-α disc, but similar median intrinsic dispersions of ∼0.03 dex; (2) turnover points in the age-[Fe/H] relations across radius for both the high- and low-α disc. The former constrains the mechanisms that set similar intrinsic dispersions, regardless of differences in the enrichment history, for stars in both disc, and the latter indicates the presence of radial migration in both disc. Our study is accompanied by an age catalogue for 64 317 stars in APOGEE derived using THE CANNON with a median uncertainty of 1.5 Gyr (26 per cent; APO-CAN stars), and a red clump catalogue of 22 031 stars with a contamination rate of 2.7 per cent.

Show Abstract

Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms

Zidong Zhang, Michel Zamojski, O. Troyanskaya, et al

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates