2573 Publications

Stoner instabilities and Ising excitonic states in twisted transition metal dichalcogenides

J. Zang
Moiré transition metal dichalcogenide (TMD) systems provide a tunable platform for studying electron-correlation driven quantum phases. Such phases have so far been found at rational fillings of the moiré superlattice, and it is believed that lattice commensurability plays a key role in their stability. In this work, we show via magnetotransport measurements on twisted WSe2 that new correlated electronic phases can exist away from commensurability. The first phase is an antiferromagnetic metal that is driven by proximity to the van Hove singularity. The second is a re-entrant magnetic field-driven insulator. This insulator is formed from a small and equal density of electrons and holes with opposite spin projections - an Ising excitonic insulator.
Show Abstract

Berry Phase Dynamics of Sliding Electron Crystals

Y. Zeng
Systems such as Wigner crystals and incommensurate charge density waves that spontaneously break a continuous translation symmetry have unusual transport properties arising from their ability to slide coherently in space. Recent experimental and theoretical studies suggest that spontaneous translation symmetry breaking in some two-dimensional materials with nontrivial quantum geometry (e.g., rhombohedral pentalayer graphene) leads to a topologically nontrivial electron crystal state called the anomalous Hall crystal and characterized by a vanishing linear-response dc longitudinal conductivity and a non-vanishing Hall conductivity. In this work we present a theoretical investigation of the sliding dynamics of this new type of electron crystal, taking into account the system's nontrivial quantum geometry. We find that when accelerated by an external electric field, the crystal acquires a transverse anomalous velocity that stems from not only the Berry curvature of the parent band but also the Galilean non-invariance of the crystal state (i.e., crystal states with different momenta are not related by simple momentum boosts). We further show that acceleration of the crystal modifies its internal current from the static crystal value that is determined by the Chern number of the crystal state. The net Hall conductance including contributions from center-of-mass motion and internal current is in general not quantized. As an experimentally relevant example, we present numerical results in rhombohedral pentalayer graphene and discuss possible experimental implications.
Show Abstract

Learning interactions between Rydberg atoms

Quantum simulators have the potential to solve quantum many-body problems that are beyond the reach of classical computers, especially when they feature long-range entanglement. To fulfill their prospects, quantum simulators must be fully controllable, allowing for precise tuning of the microscopic physical parameters that define their implementation. We consider Rydberg-atom arrays, a promising platform for quantum simulations. Experimental control of such arrays is limited by the imprecision on the optical tweezers positions when assembling the array, hence introducing uncertainties in the simulated Hamiltonian. In this work, we introduce a scalable approach to Hamiltonian learning using graph neural networks (GNNs). We employ the Density Matrix Renormalization Group (DMRG) to generate ground-state snapshots of the transverse field Ising model realized by the array, for many realizations of the Hamiltonian parameters. Correlation functions reconstructed from these snapshots serve as input data to carry out the training. We demonstrate that our GNN model has a remarkable capacity to extrapolate beyond its training domain, both regarding the size and the shape of the system, yielding an accurate determination of the Hamiltonian parameters with a minimal set of measurements. We prove a theorem establishing a bijective correspondence between the correlation functions and the interaction parameters in the Hamiltonian, which provides a theoretical foundation to our learning algorithm. Our work could open the road to feedback control of the positions of the optical tweezers, hence providing a decisive improvement of analog quantum simulators.
Show Abstract

Electrical Transport in the Hatsugai-Kohmoto Model

D. Guerci
We show that in models with the Hatsugai-Kohmoto type of interaction that is local in momentum space thus infinite-range in real space, Kubo formulas neither reproduce the correct thermodynamic susceptibilities, nor yield sensible transport coefficients. Using Kohn's trick to differentiate between metals and insulators by threading a flux in a torus geometry, we uncover the striking property that Hatsugai-Kohmoto models with an interaction-induced gap in the spectrum sustain a current that grows as the linear size at any non-zero flux and which can be either diamagnetic or paramagnetic.
Show Abstract

Doping-Induced Charge Density Wave and Ferromagnetism in the Van der Waals Semiconductor CrSBr

In materials with one-dimensional electronic bands, electron-electron interactions can produce intriguing quantum phenomena, including spin-charge separation and charge density waves (CDW). Most of these systems, however, are non-magnetic, motivating a search for anisotropic materials where the coupling of charge and spin may affect emergent quantum states. Here, electron doping the van der Waals magnetic semiconductor CrSBr induces an electronically driven quasi-1D CDW, which survives above room temperature. Lithium intercalation also increases the magnetic ordering temperature to 200 K and changes its interlayer magnetic coupling from antiferromagnetic to ferromagnetic. The spin-polarized nature of the anisotropic bands that give rise to this CDW enforces an intrinsic coupling of charge and spin. The coexistence and interplay of ferromagnetism and charge modulation in this exfoliatable material provides a promising platform for studying tunable quantum phenomena across a range of temperatures and thicknesses.
Show Abstract

Anyon Superconductivity from Topological Criticality in a Hofstadter-Hubbard Model

The identification of novel mechanisms for superconductivity is a longstanding goal in theoretical physics. In this work, we argue that the combination of repulsive interactions and high magnetic fields can generate electron pairing, phase coherence and superconductivity. Inspired by the large lattice constants of moiré materials, which make large flux per unit cell accessible at laboratory fields, we study the triangular lattice Hofstadter-Hubbard model at one-quarter flux quantum per plaquette, where previous literature has argued that a chiral spin liquid separates a weak-coupling integer quantum Hall phase and a strong-coupling topologically-trivial Mott insulator. We argue that topological superconductivity emerges upon doping in the vicinity of the integer quantum Hall to chiral spin liquid transition. We employ exact diagonalization and density matrix renormalization group methods to examine this theoretical scenario and find that electronic pairing indeed occurs above the half-filled ground states not just near the putative critical point but over a remarkably broad range of coupling strengths on both sides of criticality. On the chiral spin liquid side, our results provide a concrete model realization of the storied mechanism of anyon superconductivity. Our study thus establishes a beyond-BCS mechanism for electron pairing in a well-controlled limit, relying crucially on the interplay between electron correlations and band topology.
Show Abstract

Cavity engineered phonon-mediated superconductivity in MgB

Strong laser pulses can control superconductivity, inducing non-equilibrium transient pairing by leveraging strong-light matter interaction. Here we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB2 under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature can be, in principles, enhanced by ≈73% (≈40%) in an in-plane (out-of-plane) polarized cavity. However, in a realistic cavity, we expect the Tc of MgB2 can increase, at most, by 5 K via photon vacuum fluctuations. The results highlight that strong light-matter coupling in extended systems can profoundly alter material properties in a non-perturbative way by modifying their electronic structure and phononic dispersion at the same time. Our findings indicate a pathway to the experimental realization of light-controlled superconductivity in solid-state materials at equilibrium via cavity-material engineering.
Show Abstract

Good plasmons in a bad metal

Correlated materials may exhibit unusually high resistivity increasing linearly in temperature, breaking through the Mott-Ioffe-Regel bound, above which coherent quasiparticles are destroyed. The fate of collective charge excitations, or plasmons, in these systems is a subject of debate. Several studies suggest plasmons are overdamped while others detect unrenormalized plasmons. Here, we present direct optical images of low-loss hyperbolic plasmon polaritons (HPPs) in the correlated van der Waals metal MoOCl2. HPPs are plasmon-photon modes that waveguide through extremely anisotropic media and are remarkably long-lived in MoOCl2. Many-body theory supported by photoemission results reveals that MoOCl2 is in an orbital-selective and highly incoherent Peierls phase. Different orbitals acquire markedly different bonding-antibonding character, producing a highly-anisotropic, isolated Fermi surface. The Fermi surface is further reconstructed and made partly incoherent by electronic interactions, renormalizing the plasma frequency. HPPs remain long-lived in spite of this, allowing us to uncover previously unseen imprints of electronic correlations on plasmonic collective modes.
Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.