The observation of delicate correlated phases in twisted heterostructures of graphene and transition metal dichalcogenides suggests that moiré flat bands are intrinsically resilient against certain types of disorder. Here, we investigate the robustness of moiré flat bands in the chiral limit of the Bistrizer-MacDonald model -- applicable to both platforms in certain limits -- and demonstrate drastic differences between the first magic angle and higher magic angles in response to chiral symmetric disorder that arise, for instance, from lattice relaxation. Using a hidden constant of motion, we decompose the non-abelian gauge field induced by interlayer tunnelings into two decoupled abelian ones, whose effective magnetic field splits into an anomalous contribution and a fluctuating part. The anomalous field maps the moiré flat bands onto a zeroth Dirac Landau level, whose flatness withstands any chiral symmetric perturbation due to a topological index theorem -- thereby underscoring a topological mechanism for band flatness. Only the first magic angle can fully harness this topological protection due to its weak fluctuating magnetic field. In higher magic angles, the amplitude of fluctuations largely exceeds the anomalous contribution, which we find results in an extremely large sensitivity to microscopic details. Through numerical simulations, we study various types of disorder and identify the processes that are enhanced or suppressed in the chiral limit. Interestingly, we find that the topological suppression of disorder broadening persists away from the chiral limit and is further accentuated by isolating a single sublattice polarized flat band in energy. Our analysis suggests the Berry curvature hotspot at the top of the K and K′ valence band in the transition metal dichalcogenide monolayers is essential for the stability of its moiré flat bands and their correlated states., OpenAccessURL = https://arxiv.org/abs/2403.19656
Show Abstract