2596 Publications

Engineering 2D square lattice Hubbard models in 90° twisted Ge/SnX (X=S, Se) moiré supperlattices

Due to the large-period superlattices emerging in moiré two-dimensional (2D) materials, electronic states in such systems exhibit low energy flat bands that can be used to simulate strongly correlated physics in a highly tunable setup. While many investigations have thus far focused on moiré flat bands and emergent correlated electron physics in triangular, honeycomb and quasi-one-dimensional lattices, tunable moiré realizations of square lattices subject to strong correlations remain elusive. Here we propose a feasible scheme to construct moire square lattice systems by twisting two layers of 2D materials in a rectangular lattice by 90 degrees. We demonstrate such scheme with twisted Ge/SnX (X=S,Se) moiré superlattices and theoretical calculate their electronic structures from first principles. We show that the lowest conduction flat band in these systems can be described by a square lattice Hubbard model with parameters which can be controlled by varying the choice of host materials, number of layers, and external electric fields. In particular, twisted double bilayer GeSe realizes a square lattice Hubbard model with strong frustration due to the next nearest neighbour hopping that could lead to unconventional superconductivity, in close analogy to the Hubbard model for copper-oxygen planes of cuprate high-temperature superconductors. The basic concept of using 90-degree twisted 2D materials with rectangular unit cell to realize the square lattice Hubbard model works in general and therefore we establish those systems as tunable platforms to simulate correlation physics in such a geometries.
Show Abstract

Optical signatures of dynamical excitonic condensates

We theoretically study dynamical excitonic condensates occurring in bilayers with an imposed chemical potential difference and in photodoped semiconductors. We show that optical spectroscopy can experimentally identify phase-trapped and phase-delocalized dynamical regimes of condensation. In the weak-bias regime, the trapped dynamics of the order parameter's phase lead to an in-gap absorption line at a frequency almost independent of the bias voltage, while for larger biases, the frequency of the spectral feature increases approximately linearly with bias. In both cases there is a pronounced second harmonic response. Close to the transition between the trapped and freely oscillating states, we find a strong response upon application of a weak electric probe field and compare the results to those found in a minimal model description for the dynamics of the order parameter's phase and analyze the limitations of the latter.
Show Abstract

Intertwined Superconductivity and Magnetism from Repulsive Interactions in Kondo Bilayers

While superconductors are conventionally established by attractive interactions, higher-temperature mechanisms for emergent electronic pairing from strong repulsive electron-electron interactions remain under considerable scrutiny. Here, we establish a strong-coupling mechanism for intertwined superconductivity and magnetic order from purely repulsive interactions in a Kondo-like bilayer system, composed of a two-dimensional Mott insulator coupled to a layer of weakly-interacting itinerant electrons. Combining large scale DMRG and Monte Carlo simulations, we find that superconductivity persists and coexists with magnetism over a wide range of interlayer couplings. We classify the resulting rich phase diagram and find 2-rung antiferromagnetic and 4-rung antiferromagnetic order in one-dimensional systems along with a phase separation regime, while finding that superconductivity coexists with either antiferromagnetic or ferromagnetic order in two dimensions. Remarkably, the model permits a rigorous strong-coupling analysis via localized spins coupled to charge-2e bosons through Kugel-Khomskii interactions, capturing the pairing mechanism in the presence of magnetism due to emergent attractive interactions. Our numerical analysis reveals that pairing remains robust well beyond the strong-coupling regime, establishing a new mechanism for superconductivity in coupled weakly- and strongly-interacting electron systems, relevant for infinite-layer nickelates and superconductivity in moire multilayer heterostructures.
Show Abstract

Uniaxial plasmon polaritons via charge transfer at the graphene/CrSBr interface

Graphene is a privileged 2D platform for hosting confined light-matter excitations known as surface plasmon-polaritons (SPPs), as it possesses low intrinsic losses with a high degree of optical confinement. However, the inherently isotropic optical properties of graphene limit its ability to guide and focus SPPs, making it less suitable than anisotropic elliptical and hyperbolic materials as a platform for polaritonic lensing and canalization. Here, we present the graphene/CrSBr heterostructure as an engineered 2D interface that hosts highly anisotropic SPP propagation over a wide range of frequencies in the mid-infrared and terahertz. Using a combination of scanning tunneling microscopy (STM), scattering-type scanning near-field optical microscopy (s-SNOM), and first-principles calculations, we demonstrate mutual doping in excess of 1013 cm−2 holes/electrons between the interfacial layers of graphene/CrSBr heterostructures. SPPs in graphene activated by charge transfer interact with charge-induced anisotropic intra- and interband transitions in the interfacial doped CrSBr, leading to preferential SPP propagation along the quasi-1D chains that compose each CrSBr layer. This multifaceted proximity effect both creates SPPs and endows them with anisotropic transport and propagation lengths that differ by an order-of-magnitude between the two in-plane crystallographic axes of CrSBr.
Show Abstract

Emergent polaronic correlations in doped spin liquids

The interplay between spin and charge degrees of freedom arising from doping a Mott insulating quantum spin liquid (QSL) has been a topic of research for several decades. Calculating properties of these fractionalized metallic states in single-band models are generally restricted to mean-field patron descriptions and small fluctuations around these states, which are insufficient for quantitative comparison of observables to measurements performed in strongly-correlated systems. In this work, we numerically study a class of correlated electronic wavefunctions which support fractionalized spin and charge excitations and which fully take into account gauge fluctuations through the enforcement of local Hilbert space constraints. By optimizing the energy of these wavefunctions against the hole-doped Fermi Hubbard Hamiltonian, we obtain a variational ansatz for describing the low-energy physics of this model. We compare measurements of hole-induced spin-spin correlation functions to measurements taken in low temperature cold-atom simulations of the Hubbard model and find quantitative agreement between the two. In particular, we demonstrate the emergence of magnetic polaron correlations in these metallic states.
Show Abstract

Fast Scrambling at the Boundary

Many-body systems which saturate the quantum bound on chaos are attracting interest across a wide range of fields. Notable examples include the Sachdev-Ye-Kitaev model and its variations, all characterised by some form or randomness and all to all couplings. Here we study many-body quantum chaos in a quantum impurity model showing Non-Fermi-Liquid physics, the overscreened multichannel SU(N) Kondo model. We compute exactly the low-temperature behavior of the out-of time order correlator in the limit of large N and large number of channels K, at fixed ratio γ=K/N. Due to strong correlations at the impurity site the spin fractionalizes in auxiliary fermions and bosons. We show that all the degrees of freedom of our theory acquire a Lyapunov exponent which is linear in temperature as T→0, with a prefactor that depends on γ. Remarkably, for N=K the impurity spin displays maximal chaos, while bosons and fermions only get up to half of the maximal Lyapunov exponent. Our results highlights two new features: a non-disordered model which is maximally chaotic due to strong correlations at its boundary and a fractionalization of quantum chaos.
Show Abstract

Re-anchoring Quantum Monte Carlo with Tensor-Train Sketching

We propose a novel algorithm for calculating the ground-state energy of quantum many-body systems by combining auxiliary-field quantum Monte Carlo (AFQMC) with tensor-train sketching. In AFQMC, having a good trial wavefunction to guide the random walk is crucial for avoiding sign problems. Typically, this trial wavefunction is fixed throughout the simulation. Our proposed method iterates between determining a new trial wavefunction in the form of a tensor train, derived from the current walkers, and using this updated trial wavefunction to anchor the next phase of AFQMC. Numerical results demonstrate that our algorithm is highly accurate for large spin systems, achieving a relative error of (10
Show Abstract

Chiral Floquet engineering on topological fermions in chiral crystals

The interplay of chiralities in light and quantum matter provides an opportunity to design and manipulate chirality-dependent properties in quantum materials. Herein we report the chirality-dependent Floquet engineering on topological fermions with the high Chern number in chiral crystal CoSi via circularly polarized light (CPL) pumping. Intense light pumping does not compromise the gapless nature of topological fermions in CoSi, but displaces the crossing points in momentum space along the direction of light propagation. The Floquet chirality index is proposed to signify the interplay between the chiralities of topological fermion, crystal, and incident light, which determines the amplitudes and directions of light-induced momentum shifts. Regarding the time-reversal symmetry breaking induced by the CPL pumping, momentum shifts of topological fermions result in the birth of transient anomalous Hall signals in non-magnetic CoSi within an ultrafast time scale, which Mid-infrared (IR) pumping and terahertz (THz) Kerr or Faraday probe spectroscopy could experimentally detect. Our findings provide insights into exploring novel applications in optoelectronic devices by leveraging the degree of freedom of chirality in the non-equilibrium regime.
Show Abstract

Two-dimensional heavy fermions in the van der Waals metal CeSiI

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1,2,3,4,5,6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7,8,9,10,11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.
Show Abstract
2024

Re-entrant phase transitions induced by localization of zero-modes

Flaviano Morone, D. Sels

Common wisdom dictates that physical systems become less ordered when heated to higher temperature. However, several systems display the opposite phenomenon and move to a more ordered state upon heating, e.g. at low temperature piezoelectric quartz is paraelectric and it only becomes piezoelectric when heated to sufficiently high temperature. The presence, or better, the re-entrance of unordered phases at low temperature is more prevalent than one might think. Although specific models have been developed to understand the phenomenon in specific systems, a universal explanation is lacking. Here we propose a universal simple microscopic theory which predicts the existence of two critical temperatures in inhomogeneous systems, where the lower one marks the re-entrance into the less ordered phase. We show that the re-entrant phase transition is caused by disorder-induced spatial localization of the zero-mode on a finite, i.e. sub-extensive, region of the system. Specifically, this trapping of the zero-mode disconnects the fluctuations of the order parameter in distant regions of the system, thus triggering the loss of long-range order and the re-entrance into the disordered phase. This makes the phenomenon quite universal and robust to the underlying details of the model, and explains its ubiquitous observation.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.