2573 Publications

Re-entrant phase transitions induced by localization of zero-modes

Common wisdom dictates that physical systems become less ordered when heated to higher temperature. However, several systems display the opposite phenomenon and move to a more ordered state upon heating, e.g. at low temperature piezoelectric quartz is paraelectric and it only becomes piezoelectric when heated to sufficiently high temperature. The presence, or better, the re-entrance of unordered phases at low temperature is more prevalent than one might think. Although specific models have been developed to understand the phenomenon in specific systems, a universal explanation is lacking. Here we propose a universal simple microscopic theory which predicts the existence of two critical temperatures in inhomogeneous systems, where the lower one marks the re-entrance into the less ordered phase. We show that the re-entrant phase transition is caused by disorder-induced spatial localization of the zero-mode on a finite, i.e. sub-extensive, region of the system. Specifically, this trapping of the zero-mode disconnects the fluctuations of the order parameter in distant regions of the system, thus triggering the loss of long-range order and the re-entrance into the disordered phase. This makes the phenomenon quite universal and robust to the underlying details of the model, and explains its ubiquitous observation.
Show Abstract

Two-dimensional Topological Quantum Chemistry and Catalog of Topological Materials

We adapt the topological quantum chemistry formalism to layer groups, and apply it to study the band topology of 8,872 entries from the computational two-dimensional (2D) materials databases C2DB and MC2D. In our analysis, we find 4,073 topologically non-trivial or obstructed atomic insulator entries, including 905 topological insulators, 602 even-electron number topological semimetals, and 1,003 obstructed atomic insulators. We thus largely expand the library of known topological or obstructed materials in two dimensions, beyond the few hundreds known to date. We additionally classify the materials into four categories: experimentally existing, stable, computationally exfoliated, and not stable. We present a detailed analysis of the edge states emerging in a number of selected new materials, and compile a Topological 2D Materials Database (2D-TQCDB) containing the band structures and detailed topological properties of all the materials studied in this work. The methodology here developed is implemented in new programs available to the public, designed to study the topology of any non-magnetic monolayer or multilayer 2D material.
Show Abstract

Thermopower across Fermi-volume-changing quantum phase transitions without translational symmetry breaking

We describe the evolution of low-temperature thermopower across Fermi-volume-changing quantum phase transitions in Kondo lattice models without translational symmetry breaking. This transition moves from a heavy Fermi liquid with a conventional Luttinger-volume large Fermi surface to a 'FL*' state, characterized by a small Fermi surface and a spin liquid with fractionalized excitations. The onset of the large Fermi surface phase is driven by the condensation of a Higgs field that carries a unit gauge charge under an emergent U(1) gauge field. We consider the case with spatially random Kondo exchange, as this leads to strange metal behavior in electrical transport. We find a large asymmetric thermopower in a 'skewed' marginal Fermi liquid, with similarities to the skewed non-Fermi liquid of Georges and Mravlje (arXiv:2102.13224). Our findings are consistent with recent observations in heavy fermion compounds (Z.-Y. Cao et al., arXiv:2408.13604), and describe an enhancement of thermopower on the large Fermi surface side as well as a non-monotonic behavior on the small Fermi surface side. Our results also apply to single-band Hubbard models and the pseudogap transition in the cuprates. In the ancilla framework, single-band models exhibit an inverted Kondo lattice transition: the small Fermi surface pseudogap state corresponds to the condensed Higgs state. This inversion results in an enhancement of thermopower on the pseudogap side in our theory, consistent with observations in the cuprates (C. Collignon et al., arXiv:2011.14927; A. Gourgout et al., arXiv:2106.05959). We argue that these observations support a non-symmetry-breaking Fermi-volume-changing transition as the underlying description of the onset of the pseudogap in the cuprates.
Show Abstract

Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling

We demonstrate that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit. We do so by first showing that the full non-relativistic Pauli-Fierz problem of an ensemble of strongly-coupled molecules in the dilute-gas limit reduces in the cavity Born-Oppenheimer approximation to a cavity-Hartree equation for the electronic structure. Consequently, each individual molecule experiences a self-consistent coupling to the dipoles of all other molecules, which amount to non-negligible values in the thermodynamic limit (large ensembles). Thus collective vibrational strong coupling can alter individual molecules strongly for localized "hotspots" within the ensemble. Moreover, the discovered cavity-induced polarization pattern possesses a zero net polarization, which resembles a continuous form of a spin glass (or better polarization glass). Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure, which can give rise to numerous, so far overlooked, physical mechanisms.
Show Abstract

Regularizing 3D conformal field theories via anyons on the fuzzy sphere

Recently introduced ''fuzzy sphere'' method has enabled accurate numerical regularizations of certain three-dimensional (3D) conformal field theories (CFTs). The regularization is provided by the non-commutative geometry of the lowest Landau level filled by electrons, such that the charge is trivially gapped due to the Pauli exclusion principle at filling factor $ν=1$, while the electron spins encode the desired CFT. Successful applications of the fuzzy sphere to paradigmatic CFTs, such as the 3D Ising model, raise an important question: how finely tuned does the underlying electron system need to be? Here, we show that the 3D Ising CFT can also be realized at fractional electron fillings. In such cases, the CFT spectrum is intertwined with the charge-neutral spectrum of the underlying fractional quantum Hall (FQH) state -- a feature that is trivially absent in the previously studied $ν=1$ case. Remarkably, we show that the mixing between the CFT spectrum and the FQH spectrum is strongly suppressed within the numerically-accessible system sizes. Moreover, we demonstrate that the CFT critical point is unaffected by the exchange statistics of the particles and by the nature of topological order in the charge sector. Our results set the stage for the fuzzy-sphere exploration of conformal critical points between topologically-ordered states.
Show Abstract

Benchmarking Functionals for Strong-Field Light-Matter Interactions in Adiabatic Time-Dependent Density Functional Theory

In recent years, time-dependent density functional theory (TDDFT) has been extensively employed for highly nonlinear optics in molecules and solids, including high harmonic generation (HHG), photoemission, and more. TDDFT exhibits a relatively low numerical cost while still describing both light-matter and electron–electron interactions ab initio, making it highly appealing. However, the majority of implementations of the theory utilize the simplest possible approximations for the exchange-correlation (XC) functional–either the local density or generalized gradient approximations, which are traditionally considered to have rather poor chemical accuracy. We present the first systematic study of the XC functional effect on molecular HHG, testing various levels of theory. Our numerical results suggest justification for using simpler approximations for the XC functional, showing that hybrid and meta functionals (as well as Hartree–Fock) can, at times, lead to poor and unphysical results. The specific source of the failure in more elaborate functionals should be topic of future work, but we hypothesize that its origin might be connected to the adiabatic approximation of TDDFT.
Show Abstract
2024

Re-entrant phase transitions induced by localization of zero-modes

Common wisdom dictates that physical systems become less ordered when heated to higher temperature. However, several systems display the opposite phenomenon and move to a more ordered state upon heating, e.g. at low temperature piezoelectric quartz is paraelectric and it only becomes piezoelectric when heated to sufficiently high temperature. The presence, or better, the re-entrance of unordered phases at low temperature is more prevalent than one might think. Although specific models have been developed to understand the phenomenon in specific systems, a universal explanation is lacking. Here we propose a universal simple microscopic theory which predicts the existence of two critical temperatures in inhomogeneous systems, where the lower one marks the re-entrance into the less ordered phase. We show that the re-entrant phase transition is caused by disorder-induced spatial localization of the zero-mode on a finite, i.e. sub-extensive, region of the system. Specifically, this trapping of the zero-mode disconnects the fluctuations of the order parameter in distant regions of the system, thus triggering the loss of long-range order and the re-entrance into the disordered phase. This makes the phenomenon quite universal and robust to the underlying details of the model, and explains its ubiquitous observation.
Show Abstract

A Toffoli Gadget for Magnetic Tunnel Junctions Boltzmann Machines

Magnetic Tunnel Junctions (MTJs) are of great interest for non-conventional computing applications. The Toffoli gate is a universal reversible logic gate, enabling the construction of arbitrary boolean circuits. Here, we present a proof-of-concept construction of a gadget which encodes the Toffoli gate's truth table into the ground state of coupled uniaxial nanomagnets that could form the free layers of perpendicularly magnetized MTJs. This construction has three input bits, three output bits, and one ancilla bit. We numerically simulate the seven macrospins evolving under the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation. We investigate the effect of the anisotropy-to-exchange-coupling strength ratio H
Show Abstract

Linear resistivity at van Hove singularities in twisted bilayer WSe2

Different mechanisms driving a linear temperature dependence of the resistivity ρ ∼ T at van Hove singularities (VHSs) or metal-insulator transitions when doping a Mott insulator are being debated intensively with competing theoretical proposals. We experimentally investigate this using the exceptional tunability of twisted bilayer (TB) WSe2 by tracking the parameter regions where linear-in-T resistivity is found in dependency of displacement fields, filling, and magnetic fields. We find that even when the VHSs are tuned rather far away from the half-filling point and the Mott insulating transition is absent, the T-linear resistivity persists at the VHSs. When doping away from the VHSs, the T-linear behavior quickly transitions into a Fermi liquid behavior with a T2 relation. No apparent dependency of the linear-in-T resistivity, besides a rather strong change of prefactor, is found when applying displacement fields as long as the filling is tuned to the VHSs, including D ∼ 0.28 V/nm where a high-order VHS is expected. Intriguingly, such non-Fermi liquid linear-in-T resistivity persists even when magnetic fields break the spin-degeneracy of the VHSs at which point two linear in T regions emerge, for each of the split VHSs separately. This points to a mechanism of enhanced scattering at generic VHSs rather than only at high-order VHSs or by a quantum critical point during a Mott transition. Our findings provide insights into the many-body consequences arising out of VHSs, especially the non-Fermi liquid behavior found in moiré materials.
Show Abstract
2024
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.