Mathematics of Deep Learning Seminar: Lexing Ying

Date


Title: Solving Inverse Problems with Deep Learning

Abstract: This talk is about some recent progress on solving inverse problems using deep learning. Compared to traditional machine learning problems, inverse problems are often limited by the size of the training data set. We show how to overcome this issue by incorporating mathematical analysis and physics into the design of neural network architectures. We first describe neural network representations of pseudodifferential operators and Fourier integral operators. We then continue to discuss applications including electric impedance tomography, optical tomography, inverse acoustic/EM scattering, seismic imaging, and travel-time tomography.

Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.