MPS Conference on Higher Dimensional Geometry, August 2226, 2022
Organizers:
Paolo Cascini, Imperial College
Ivan Cheltsov, University of Edinburgh
James McKernan, USCD
Chenyang Xu, Princeton University
Speakers:
Harold Blum, Stony Brook University
Lukas Braun, University of Freiburg
Giulio Codogni, University of Rome Tor Vergata
János Kollár, Princeton University
Radu Laza, Stony Brook University
Eveline Legendre, Toulouse Mathematics Institute
Chi Li, Rutgers University
Jennifer Li, Princeton University
Yuchen Liu, Northwestern University
Nivedita Niswanathan, Loughborough University
Calum Spicer, King’s College London
Roberto Svaldi, EPFL
Chenyang Xu, Princeton University
Ziquan Zhuang, MIT

Agenda
MONDAY, AUGUST 22^{nd}
9:30 AM János Kollár  Moduli of varieties of general type (1/3) 11:00 AM Chenyang Xu  Survey of local stability theory 1:30 PM Giulio Codogni  Ample cone of moduli spaces and HarderNarsimhan filtration 2:30 PM Radu Laza Higher Du Bois and higher rational singularities 4:00 PM Nivedita Niswanathan  On Kstability of some singular del Pezzo surfaces TUESDAY, AUGUST 23^{rd}
9:30 AM János Kollár  Moduli of varieties of general type (2/3) 11:00 AM Yuechen Liu  Recent developments in Kstability (1/3) 1:30 PM Chi Li  Polarized Hodge structures for Clemens manifolds 2:30 PM Lukas Braun  Reductive quotients of klt varieties 4:00 PM Short Talks WEDNESDAY, AUGUST 24^{th}
9:30 AM Roberto Svaldi  Minimal model program for foliated surfaces: a different approach 11:00 AM Calum Spicer  Minimal model program for foliated surfaces: a different approach THURSDAY, AUGUST 25^{th}
9:30 AM János Kollár Moduli of varieties of general type (3/3) 11:00 AM Yuchen Liu  Recent developments in Kstability (2/3) 1:30 PM Ziquan Zhuang  Stable degenerations of klt singularities 2:30 PM Jennifer Li  A cone conjecture for log CalabiYau surfaces 4:00 PM Problem Session FRIDAY, AUGUST 26^{th}
9:30 AM Yuchen Liu  Recent developments in Kstability (3/3) 11:00 AM Harold Blum  Moduli of Fano varieties with complements 
Abstracts
Harold Blum
Moduli of Fano varieties with complementsWhile the theories of KSBAstability and Kstability have been successful in constructing compact moduli spaces of canonically polarized varieties and Fano varieties, respectively, the case of Ktrivial varieties remains less well understood. I will discuss a new approach to this problem in the case of Ktrivial pairs (X,D), where X is a Fano variety and D is an anticanonical Qdivisor, in which we consider all slc degenerations. In the case when X is a degeneration of P^2, this approach is successful. This is joint work with K. Ascher, D. Bejleri, K. DeVleming, G. Inchiostro, Y. Liu, X. Wang.
Lukas Braun
Reductive quotients of klt varietiesIn this talk, I will explain the proof of the recent result, obtained together with Daniel Greb, Kevin Langlois, and Joaquin Moraga,that reductive quotients of klt type varieties are of klt type. If time permits, I will also discuss several applications of our result, e.g. on quotients of Fano type varieties, good moduli spaces, and collapsing of homogeneous bundles.
Giulio Codogni
Ample cone of moduli spaces and HarderNarsimhan filtrationI will present some results about the HarderNarasimhan filtration of vector bundles associated to oneparameter families of KSBstable and Kstable varieties. As main application, I will give a quantitative description of a portion of the ample cone of KSB moduli spaces. The talk is based on a joint work and a work in progress with L. Tasin and F. Viviani.
János Kollár
Moduli of varieties of general typeWe discuss the moduli theory of varieties of general type, focusing on new results and open problems.
Radu Laza
Higher Du Bois and higher rational singularitiesTwo fundamental classes of singularities are the rational singularities, and the Du Bois singularities. Recently, M. Mustață, M. Popa, M. Saito and their collaborators have introduced a natural generalization of the Du Bois singularities, the higher Du Bois singularities. In this talk, I will discuss the companion notion of higher rational singularities and establish some basic properties for both of these classes of singularities. I will conclude by explaining some important applications of these types of singularities to degenerations and deformations of algebraic varieties. This is joint work with R. Friedman.
Chi Li
Polarized Hodge structures for Clemens manifoldsA conifold transition is a geometric transformation that is used to connect different moduli spaces of CalabiYau threefolds. Let X be a projective CalabiYau threefold. A conifold transition first contracts X along disjoint rational curves with normal bundles of type (1,1), and then smooths the resulting singular complex space Z to a new compact complex manifold Y. Such Y is called a Clemens manifold and can be nonKahler. We prove that any small smoothing Y of Z satisfies ddbarlemma. We also show that the resulting pure Hodge structure of weight three is polarized by the cup product. This answers some questions of R. Friedman. The proof uses the theory of limiting mixed Hodge structures and basic linear algebra.
Jennifer Li
A cone conjecture for log CalabiYau surfacesIn 1993, Morrison conjectured that the automorphism group of a CalabiYau 3fold acts on its nef cone with a rational polyhedral fundamental domain. In this talk, I will discuss a version of this conjecture for log CalabiYau surfaces. In particular, for a generic log CalabiYau surface with singular boundary, the monodromy group acts on the nef effective cone with a rational polyhedral fundamental domain. In addition, the automorphism group of the unique surface with a split mixed Hodge structure in each deformation type acts on the nef effective cone with a rational polyhedral fundamental domain.
Yuchen Liu (3 lectures)
Recent developments in KstabilityKstability was introduced by Tian and Donaldson to characterize the solution of the KahlerEinstein problem on Fano varieties. In the past decade, a purely algebraic geometric study of Kstability has prospered, based on the birational classification theory of varieties centered around the minimal model program. As one of the most important consequences, the Kmoduli theory for Fano varieties has been established using purely algebraic methods. In this lecture series, we will give an overview of the recent developments in the algebraic theory of Kstability. In the first part, we will discuss FujitaLi’s valuative criterion. In the second part, we will discuss the construction of Kmoduli spaces from purely algebraic methods. In the third part, we will discuss explicit Kmoduli spaces of log Fano varieties and their wallcrossing.
Roberto Svaldi, Calum Spicer
Minimal model program for foliated surfaces: a different approach.The birational classification of foliated surface is pretty much complete, thanks to the work of Brunella, Mendes, McQuillan. In recent joint work we explore a new approach to studying the singularities and the minimal model program for foliated surfaces inspired by the work of PereiraSvaldi. The basic idea is rather simple: rather than just considering the canonical divisor \(K{\mathcal F}\) of a foliation \(\mathcal F\) (the classic analogue of the canonical divisor in the foliated world) together with the linear system \(mK\mathcal{F}\), \( m \in \mathbb N\), one can consider perturbed divisors \(K_{\mathcal F}+\epsilon K_X\), \(\epsilon>0\) and linear systems of the form \(nKX + mK{\mathcal F}\), \(n,m >0\). Those perturbed divisors (and the related linear systems) encode a lot of the positivity features that classically the canonical divisor (and pluricanonical forms) on a projective variety display and that do not necessarily hold for \(K_\mathcal{F}\) alone. The price to pay for working with these divisors is to define a new category of singularities for foliated varieties. We will introduce these new singularities and try to explain how they behave via examples in the 1st talk. The 2nd talk will instead be devoted to discussing new results and applications for this class of divisors, discussing new results on the boundedness of surface foliations, and applications of these results to some classical problems in foliation theory, for instance, on the problem of bounding the degree of orbits of vector fields in the complex plane.
Nivedita Niswanathan
On Kstability of some singular del Pezzo surfacesThere has been a lot of development recently in understanding the existence of KahlerEinstein metrics on Fano manifolds due to the YauTianDonaldson conjecture, which gives us a way of looking at this problem in terms of the notion of Kstability. In particular, this problem is solved in totality for smooth del Pezzo surfaces by Tian. For del Pezzo surfaces with quotient singularities, there are partial results. In this talk, we will consider singular del Pezzo surfaces which are quasismooth, wellformed hypersurfaces in weighted projective space, and understand what we can say about their Kstability. This is ongoing joint work with InKyun Kim and Joonyeong Won.
Chenyang Xu
Survey of local stability theoryA few years ago, Chi Li introduced the concept of normalized volume function for any klt singularity and proposed to study the minimizing valuation. Together with later work of LiXu, this initiated the foundation of local Kstability theory, centered around the Stable Degeneration Conjecture. In the past few years, a lot of interests were attracted to the Stable Degeneration Conjecture, and it was completely settled recently (for the last step, see Ziquan Zhuang’s lecture in this conference). In this talk, I will survey the local stability theory. The lecture can be regarded as the pretalk for Zhuang’s lecture.
Ziquan Zhuang
Stable degenerations of klt singularitiesSeveral years ago, Chi Li introduced the normalized volumes of valuations in his work on Kstability. The stable degeneration conjecture, due to Li and Xu, predicts a local stability theory of klt singularities through the minimizers of the the normalized volume functions. I’ll talk about the recent solution of this conjecture, focusing on the finite generation property of valuations. Based on joint work with Chenyang Xu.
SHORT TALKS
Elena Denisova
On Kstability of P3 blown up along the disjoint union of a twisted cubic curve and a line.We discuss how to find all Kpolystable smooth Fano threefolds that can be obtained as blowup of P^3 along the disjoint union of a twisted cubic curve and a line.
Jacob Keller
Kstability of moduli of bundles on curves.Moduli spaces of vector bundles on curves with fixed determinants are Fano varieties that play an important role in algebraic geometry as well as other areas of mathematics and physics. This talk will outline an approach to proving these Fano varieties are Kstable, using toric degenerations and the Luna slice theorem for stacks. The Kstability of these spaces has the consequence that there exist components of the Kpolystable moduli space which are birational to Mg and are therefore of general type.
Yujie Luo
On Shokurov’s conjecture on \((\epsilon,n)\)complements for rationally connected threefoldsWe show the existence of \((\epsilon,n)\)complements for rationally connected CalabiYau threefolds. As a corollary, we show that the set of rationally connected threefold \(X\) which has an \((\epsilon,\mathbb{R}r)\)complement is bounded in codimension one. This is joint work with Guodu Chen and Jingjun Han.
Lisa Marquand
Symplectic birational involutions of manifolds of OG10 type.A big open problem surrounding hyperkähler manifolds is the construction of new examples: currently there are only 4 known deformation types. One approach is to consider finite symplectic group actions of a known hyperkähler manifold, and study the symplectic resolution (if it exists) of the fixed locus. In this talk, we will obtain a partial classification of birational symplectic involutions of manifolds of OG10 type. We do this from two vantage points: firstly relating to automorphisms of the Leech lattice, and secondly we relate to automorphisms of cubic fourfolds. More specifically, we compute the algebraic sublattice of the middle cohomology of a cubic fourfold with a certain involution explicitly. This has several consequences with regard to cubic fourfolds; namely we exhibit a 10dimensional family of rational cubic fourfolds.
Erik Paemurru
Parameter space of divisorial contractionsIn the literature, local analytic types of 3dimensional divisorial contractions with centre a point have been almost classified. In some cases, a local analytic divisorial contraction can correspond to uncountably many global algebraic divisorial contractions. In this case, we show how to construct a parameter space of global algebraic divisorial contractions.
Theo Papazachariou
Kmoduli for log Fano complete intersectionsAn important category of geometric objects in algebraic geometry is smooth Fano varieties. These have been classified in 1, 10 and 105 families in dimensions 1, 2 and 3 respectively, while in higher dimensions the number of Fano families is yet unknown. An important problem is compactifying these families into moduli spaces via Kstability. In this talk, I will describe the compactification of the family of Fano threefolds, which is obtained by blowing up the projective space along a complete intersection of two quadrics which is an elliptic curve, into a Kmoduli space using Geometric Invariant Theory (GIT). A more interesting setting occurs in the case of pairs of varieties and a hyperplane section where the Kmoduli compactifications tessellate depending on a parameter. In this case it has been shown recently that the Kmoduli decompose into a wallchamber decomposition depending on a parameter, but wallcrossing phenomena are still difficult to describe explicitly. Using GIT, I will describe an explicit example of wallcrossing in the Kmoduli spaces, where both variety and divisor differ in the deformation families before and after the wall, given by log pairs of Fano surfaces of degree 4 and a hyperplane section.
Lu Qi
Convexity of volumes of filtrations on local ringsI will talk about a convexity property of volumes of filtrations in the local setting, which has applications in the theory of volumes of valuations and Kstability. Moreover, we find a construction which can be used to generalize some classical results in commutative algebra. This is based on joint work with Harold Blum and Yuchen Liu.
Arman Sarikyan
On the rationality of FanoEnriques threefolds with terminal cyclic quotient singularities.A threedimensional nonGorenstein Fano variety with at most canonical singularities is called a FanoEnriques threefold if it contains an ample Cartier divisor that is an Enriques surface with at most canonical singularities. There is no complete classification of FanoEnriques threefolds yet. However, L. Bayle has classified FanoEnriques threefolds with terminal cyclic quotient singularities in terms of their canonical coverings, which are smooth Fano threefolds in this case. The rationality of FanoEnriques threefolds is an open classical problem that goes back to the works of G. Fano and F. Enriques. In this talk we will discuss the rationality of FanoEnriques threefolds with terminal cyclic quotient singularities.
Claudia Stadlmayr
Which rational double points occur on del Pezzo surfaces?Canonical surface singularities, also called rational double points (RDPs), can be classified according to their dual resolution graphs, which are Dynkin diagrams of types A, D, and E. Whereas in characteristic different from 2, 3, and 5, rational double points are “taut”, that is, they are uniquely determined by their dual resolution graph, this is not necessarily the case in small characteristics. To such nontaut RDPs Artin assigned a coindex distinguishing the ones with the same resolution graph in terms of their deformation theory. In 1934, Du Val determined all configurations of rational double points that can appear on complex RDP del Pezzo surfaces. In order to extend Du Vals work to positive characteristic, one has to determine the Artin coindices to distinguish the nontaut rational double points that occur. In this talk, I will explain how to answer the question “Which rational double points (and configurations of them) occur on del Pezzo surfaces?” for all RDP del Pezzo surfaces in all characteristics. This will be done by first reducing the problem to degree 1 and then exploiting the connection to (Weierstraß models of) rational (quasi)elliptic surfaces.
Yueqiao Wu
NonArchimedean functionals and Kstability for log Fano conesLog Fano cones are generalizations of cones over log Fano varieties, and hence the theory of Kstability and YTD problem extend to this local setting. In this talk, we aim to characterize a uniform Kstability on log Fano cones using nonArchimedean functionals. We will see that it extends the notion of uniform Kstability for log Fanos to this setting.