Neuroscience Group Seminar

  • Speaker
  • Portrait photo of Kwabena BoahenKwabena Boahen, Ph.D.Professor, Bioengineering and Electrical Engineering, Stanford University
Date


Talk Title:
Spike-Based AI Hardware

Deep Neural Networks (DNNs) replace the brain’s spike-trains with instantaneous rates that are updated once every time-step. They have proven to be extremely powerful, successfully tackling tasks that were thought to be impossible just a decade ago. The current quest is to deploy DNNs on devices that communicate by radio and are powered by batteries or harvested energy (e.g., mobile phones or IoT end-points, respectively). These entirely wireless devices—projected to reach 20 billion by 2020—require much more energy-efficient computing platforms. A promising brain-inspired approach, known as neuromorphic computing, maps DNN’s discrete-time rates (functional level) to continuous-time spikes (hardware level), but its potential is yet to be realized.

In spiking neuromorphic hardware, instead of communicating and computing every time-step (clock-driven operation), communicating and computing only happens when a spike occurs (event-driven operation). Thus, communicational and computational load is reduced if each rate-update requires less than one spike (on average). And also if mapping rates to spikes does not degrade performance. Otherwise, the network’s size must be increased to compensate I will argue that spike-based neuromorphic computing’s potential energy-savings can be maximized by exploiting analog computation and communication and I will present my group’s progress in designing these mixed-signal neuromorphic chips and in reducing the overhead incurred mapping DNNs onto them.

Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.