Programming Cell Signaling Networks

  • Speaker
  • Wendell Lim holding a cellular model in his officeWendell LimDepartment of Cellular and Molecular Pharmacology Chair and Professor
Date


About Presidential Lectures

Presidential Lectures are a series of free public colloquia spotlighting groundbreaking research across four themes: neuroscience and autism science, physics, biology, and mathematics and computer science. These curated, high-level scientific talks feature leading scientists and mathematicians and are designed to foster discussion and drive discovery within the New York City research community. We invite those interested in these topics to join us for this weekly lecture series.

The design principles of cell signaling circuits allow cells to sense their environment, to process this information and to make complex response decisions. Wendell Lim and his collaborators are using synthetic biology approaches to systematically build cell networks to understand their design logic. They are harnessing this understanding to program cells with customized sensing-actuator functions — one example is smart therapeutic immune cells that can recognize and treat complex diseases, such as cancer inflammation and degeneration.

In this lecture, Lim will discuss the design principles of molecular circuits that govern cell decision-making and responses. He will also describe how these principles can be harnessed to engineer cells with customized therapeutic response programs.

About the Speaker

Wendell Lim holding a cellular model in his office

Wendell Lim is a professor in and chair of the Department of Cellular and Molecular Pharmacology at the University of California, San Francisco and an investigator of the Howard Hughes Medical Institute. He received his A.B. in Chemistry, summa cum laude, from Harvard College and his Ph.D. in Biochemistry and Biophysics at the Massachusetts Institute of Technology. He completed his postdoctoral training at Yale University. His lab has made contributions in understanding the molecular machinery of cell signaling and how molecular modules have been used in evolution to build novel new behaviors. Most recently he has been a pioneer in the field of synthetic biology, exploring how cellular design principles can be harnessed to engineer cells with customized therapeutic response programs.

Advancing Research in Basic Science and MathematicsSubscribe to our newsletters to receive news & updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.