The Erdős Discrepancy Problem

  • Speaker
  • Terence Tao, Ph.D.Professor, University of California, Los Angeles
Date & Time


TEA:
4:15 - 5:00pm
LECTURE:
5:00 - 6:15pm

Location

Gerald D. Fischbach Auditorium
160 5th Ave
New York, NY 10010 United States

View Map
About Mathematics and Physical Sciences

Mathematics and Physical Sciences Lectures are open to the public and will be held at the Gerald D. Fischbach Auditorium at the Simons Foundation headquarters in New York City. Tea is served prior to each lecture.

View all Lectures in This Series

Imagine standing on the center of a towering platform just steps in either direction from a deadly fall. You must now choreograph a sequence of steps forward and backward that will keep you on the platform. But here’s the twist: You may have to follow every step in your sequence, or just those divisible by two, or three, or some other number. What’s the longest sequence of steps you can create while guaranteeing your safety? If you’re two steps from death, the answer is 11. For three steps, the answer is 1,161. But what about for other numbers?

This conundrum, the Erdős discrepancy problem, was conjectured by mathematician Paul Erdős in around 1932 and had gone unsolved for more than seven decades. In this lecture, Terence Tao will discuss his general solution to the problem, published last year, and its connections to the Chowla and Elliot conjectures in number theory. The solution incorporates mathematical tools from probability, number theory and information theory.

About the Speaker

Terence Tao was born in Adelaide, Australia in 1975. He is a professor of mathematics at UCLA. His areas of research include harmonic analysis, partial differential equations, combinatorics and number theory. He has received a number of awards, including the Fields Medal in 2006, the MacArthur Fellowship in 2007 and the Breakthrough Prize in Mathematics in 2015.

Advancing Research in Basic Science and Mathematics Subscribe to our newsletters to receive news & updates