645 Publications

Investigating the membrane curvature sensing ability of the N-terminal domain of huntingtin

Shelli Frey, Jordyn Markle, A. Sahoo, et al.

Huntington's disease (HD) is an inherited neurodegenerative disorder associated with motor and cognitive decline, caused by a mutation in the poly-glutamine (polyQ) region near the N-terminus of the huntingtin (htt) protein. Expansion of the polyQ region results in the disease that is characterized by oligomeric and fibrillar aggregates of mutated protein. The first 17 amino acids (Nt17) of htt, which are adjacent to the polyQ tract, function as a lipid-binding domain, facilitated by the formation of an amphipathic α-helix. There is increasing evidence that lipid interactions may play a role in the toxic gain of function associated with the htt polyQ expansion, as membrane-related changes, including structural abnormalities of several organelles, are observed in HD. Given the uneven and curved shapes of organelles, it is important to examine the mechanistic preferences that drive the preferential partitioning of Nt17 to curved membranes. To better understand the role of the cell membrane environment in the interaction and aggregation of htt, circular dichroism, fluorescence microscopy, and coarse-grained molecular dynamics were employed to measure the association of Nt17 with phospholipid vesicles and subsequent effects throughout time. In zwitterionic curved membranes, sensing was driven by the bulky sidechains of phenylalanine residues, which are able to sense lipid packing defects in the curved regions of the membrane. However, in a mixture of zwitterionic and anionic lipids, curvature sensing is affected by the anionic lipid content, implying the surface charge of membranes affects the curvature sensing process. Salt screening experiments suggest a balance between the electrostatic and hydrophobic interactions that governs the extent to which Nt17 can sense physiologically relevant regions of curvature.

Show Abstract

Charge distribution and helicity tune the binding of septin’s amphipathic helix domain to membranes

C. Edelmaier, Stephen J. Klawa, M. Mofidi, Qunzhao Wang, Shreeya Bhonge, Ellysa J. D. Vogt, Brandy N. Curtis, Wenzheng Shi, S. Hanson, Daphne Klotsa, M. Gregory Forest, Amy S. Gladfelter, Ronit Freeman, E. Nazockdast

Amphipathic helices (AHs) are secondary structures that can facilitate binding of proteins to the membrane by folding into a helix with hydrophobic and hydrophilic faces that interact with the same surfaces in the lipid membrane. Septins are cytoskeletal proteins that preferentially bind to domains of micron-scale curvature on the cell membrane. Studies have shown that AH domains in septin are essential for curvature sensing. We present the first computational study of septin AH interactions with lipid bilayers. Using all-atom simulations and metadynamics-enhanced sampling, we study the effect of charge distribution at the flanking ends of septin AH on the energy for helical folding and its consequences on the binding configuration and affinity to the membrane. This is relevant to septins, since the net positive charge on the flanking C-terminal amino acids is a conserved property across several organisms. Simulations revealed that the energy barrier for folding in the neutral-capped AH is much larger than the charge-capped AH, leading to a small fraction of AH folding and integration to the membrane compared to a significantly folded configuration in the bound charge-capped AH. These observations are consistent with the binding measurements of synthetic AH constructs with variable helicity to lipid vesicles. Additionally, we examined an extended AH sequence including eight amino acids upstream and downstream of the AH to mimic the native protein. Again, simulations and experiments show that the extended peptide, with a net positive charge at C-terminus, adopts a strong helical configuration in solution, giving rise to a higher membrane affinity. Altogether, these results identify the energy cost for folding of AHs as a regulator of AH binding configuration and affinity and provide a basic template for parameterizing AH-membrane interactions as a starting point for the future multiscale simulations for septin-membrane interactions.

Show Abstract

Formation of Drosophila germ cells requires spatial patterning of phospholipids

Marcus Kilwein, P. Miller, S. Shvartsman, et al.

Germline-soma segregation is crucial for fertility. Primordial germ cells (PGCs) arise early in development and are the very first cells to form in the Drosophila embryo. At the time of PGC formation, the embryo is a syncytium where nuclei divide within a common cytoplasm. Whereas invaginating plasma membrane furrows enclose nuclei to form somatic lineages during the 14th nuclear division cycle, PGCs emerge from the syncytium during the 9th division cycle in a mechanistically distinct process. PGC formation depends on maternally deposited germ granules localized at the embryo’s posterior pole. Germ granules trigger protrusion of membrane buds that enlarge to surround several nuclei that reach the posterior pole. Buds are remodeled to cells through mitotic division and constriction of the bud neck. Previous studies implicated F-actin,1 actin regulators,2,3 and contractile ring components4 in mitotic furrow formation, but what drives bud emergence and how germ granules provoke reshaping of the plasma membrane remain unknown. Here, we investigate the mechanism of germ-granule-induced bud formation. Treating the embryo as a pressurized elastic shell, we used mathematical modeling to examine possible mechanical mechanisms for local membrane protrusion. One mechanism, outward buckling produced by polymerization of a branched F-actin network, is supported by experimental data. Further, we show that germ granules modify membrane lipid composition, promoting local branched F-actin polymerization that initiates PGC formation. We propose that a mechanism for membrane lipid regulation of F-actin dynamics in migrating cells has been adapted for PGC formation in response to spatial cues provided by germ granules.

Show Abstract

InstaMap: instant-NGP for cryo-EM density maps

Geoffrey Woollard, P. Cossio, S. Hanson, et al.

Despite the parallels between problems in computer vision and cryo-electron microscopy (cryo-EM), many state-of-the-art approaches from computer vision have yet to be adapted for cryo-EM. Within the computer-vision research community, implicits such as neural radiance fields (NeRFs) have enabled the detailed reconstruction of 3D objects from few images at different camera-viewing angles. While other neural implicits, specifically density fields, have been used to map conformational heterogeneity from noisy cryo-EM projection images, most approaches represent volume with an implicit function in Fourier space, which has disadvantages compared with solving the problem in real space, complicating, for instance, masking, constraining physics or geometry, and assessing local resolution. In this work, we build on a recent development in neural implicits, a multi-resolution hash-encoding framework called instant-NGP, that we use to represent the scalar volume directly in real space and apply it to the cryo-EM density-map reconstruction problem (InstaMap). We demonstrate that for both synthetic and real data, InstaMap for homogeneous reconstruction achieves higher resolution at shorter training stages than five other real-spaced representations. We propose a solution to noise overfitting, demonstrate that InstaMap is both lightweight and fast to train, implement masking from a user-provided input mask and extend it to molecular-shape heterogeneity via bending space using a per-image vector field.

Show Abstract

Active Hydrodynamic Theory of Euchromatin and Heterochromatin

Alex Rautu, Alexandra Zidovska, David Saintillan, M. Shelley

The genome contains genetic information essential for cell's life. The genome's spatial organization inside the cell nucleus is critical for its proper function including gene regulation. The two major genomic compartments -- euchromatin and heterochromatin -- contain largely transcriptionally active and silenced genes, respectively, and exhibit distinct dynamics. In this work, we present a hydrodynamic framework that describes the large-scale behavior of euchromatin and heterochromatin, and accounts for the interplay of mechanical forces, active processes, and nuclear confinement. Our model shows contractile stresses from cross-linking proteins lead to the formation of heterochromatin droplets via mechanically driven phase separation. These droplets grow, coalesce, and in nuclear confinement, wet the boundary. Active processes, such as gene transcription in euchromatin, introduce non-equilibrium fluctuations that drive long-range, coherent motions of chromatin as well as the nucleoplasm, and thus alter the genome's spatial organization. These fluctuations also indirectly deform heterochromatin droplets, by continuously changing their shape. Taken together, our findings reveal how active forces, mechanical stresses and hydrodynamic flows contribute to the genome's organization at large scales and provide a physical framework for understanding chromatin organization and dynamics in live cells.

Show Abstract
March 26, 2025

Recent Advances in Membrane Protein Simulations

James C. Gumbart, S. Hanson

imulating membrane proteins accurately combines two challenges into one: properly capturing the structure and dynamics of proteins as well as correctly representing the membrane environment in which they are usually embedded. Beginning with pioneering efforts in the 1980s and 1990s,1−7 both challenges have been met with increasing success over the years. Simulations of membrane proteins in realistic cellular contexts over many microseconds are now common.Concomitant advances in the determination of membrane protein structures, with over 50 unique structures determined 8 annually have further expanded the reach of simulations in this area. This Special Issue highlights a number of recent molecular dynamics (MD) simulations of membrane proteins and covers a wide range of applications and specialized techniques.

Show Abstract

A model for boundary-driven tissue morphogenesis

Daniel S. Alber, Alexandre O. Jacinto, S. Shvartsman, et al.

Tissue deformations during morphogenesis can be active, driven by internal processes, or passive, resulting from stresses applied at their boundaries. Here, we introduce the Drosophila hindgut primordium as a model for studying boundary-driven tissue morphogenesis. We characterize its deformations and show that its complex shape changes can be a passive consequence of the deformations of the active regions of the embryo that surround it. First, we find an intermediate characteristic triangular shape in the 3D deformations of the hindgut. We construct a minimal model of the hindgut primordium as an elastic ring deformed by active midgut invagination and germ band extension on an ellipsoidal surface, which robustly captures the symmetry-breaking into this triangular shape. We then quantify the 3D kinematics of the tissue by a set of contours and discover that the hindgut deforms in two stages: an initial translation on the curved embryo surface followed by a rapid breaking of shape symmetry. We extend our model to show that the contour kinematics in both stages are consistent with our passive picture. Our results suggest that the role of in-plane deformations during hindgut morphogenesis is to translate the tissue to a region with anisotropic embryonic curvature and show that uniform boundary conditions are sufficient to generate the observed nonuniform shape change. Our work thus provides a possible explanation for the various characteristic shapes of blastopore-equivalents in different organisms and a framework for the mechanical emergence of global morphologies in complex developmental systems.

Show Abstract
March 5, 2025

Heuristic energy-based cyclic peptide design

Q. Zhu, V. Mulligan, Dennis Shasha

Rational computational design is crucial to the pursuit of novel drugs and therapeutic agents. Meso-scale cyclic peptides, which consist of 7-40 amino acid residues, are of particular interest due to their conformational rigidity, binding specificity, degradation resistance, and potential cell permeability. Because there are few natural cyclic peptides, de novo design involving non-canonical amino acids is a potentially useful goal. Here, we develop an efficient pipeline (CyclicChamp) for cyclic peptide design. After converting the cyclic constraint into an error function, we employ a variant of simulated annealing to search for low-energy peptide backbones while maintaining peptide closure. Compared to the previous random sampling approach, which was capable of sampling conformations of cyclic peptides of up to 14 residues, our method both greatly accelerates the computation speed for sampling conformations of small macrocycles (ca. 7 residues), and addresses the high-dimensionality challenge that large macrocycle designs often encounter. As a result, CyclicChamp makes conformational sampling tractable for 15-to 24-residue cyclic peptides, thus permitting the design of macrocycles in this size range. Microsecond-length molecular dynamics simulations on the resulting 15, 20, and 24 amino acid cyclic designs identify designs with kinetic stability. To test their thermodynamic stability, we perform additional replica exchange molecular dynamics simulations and generate free energy surfaces. Three 15-residue designs, one 20-residue and one 24-residue design emerge as promising candidates.

Show Abstract
March 1, 2025

CyclicCAE: A Conformational Autoencoder for Efficient Heterochiral Macrocyclic Backbone Sampling

Andrew C. Powers, D. Renfrew, Parisa Hosseinzadeh, V. Mulligan

Macrocycles are a promising therapeutic class. The incorporation of heterochiral and non-natural chemical building-blocks presents challenges for rational design, however. With no existing machine learning methods tailored for heterochiral macrocycle design, we developed a novel convolutional autoencoder model to rapidly generate energetically favorable macrocycle backbones for heterochiral design and structure prediction. Our approach surpasses the current state-of-the-art method, Generalized Kinematic loop closure (GenKIC) in the Rosetta software suite. Given the absence of large, available macrocycle datasets, we created a custom dataset in-house and in silico. Our model, CyclicCAE, produces energetically stable backbones and designable structures more rapidly than GenKIC. It enables users to perform energy minimization, generate structurally similar or diverse inputs via MCMC, and conduct inpainting with fixed anchors or motifs. We propose that this novel method will accelerate the development of stable macrocycles, speeding up macrocycle drug design pipelines.

Show Abstract
February 27, 2025

Geometric, cell cycle and maternal-to-zygotic transition-associated YAP dynamics during preimplantation embryo development

Madeleine Chalifoux, M. Avdeeva, Eszter Posfai

During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood. Here we address these questions by quantitative live imaging of endogenously tagged YAP while simultaneously monitoring geometric cellular features and cell cycle progression throughout cell fate segregation. We apply a probabilistic model to our dynamic data, providing a quantitative characterization of the mutual effects of YAP and cellular relative exposed area, which has previously been shown to correlate with subcellular YAP localization in fixed samples. Additionally, we study how nuclear YAP levels are influenced by other factors, such as the decreasing pool of maternally provided YAP that is partitioned to daughter cells through cleavage divisions, cell cycle-associated nuclear volume changes, and a delay after divisions in adjusting YAP levels to new cell positions. Interestingly, we find that establishing low nuclear YAP levels required for the inner cell mass fate is largely achieved by passive cell cycle-associated mechanisms. Moreover, contrary to expectations, we find that mechanical perturbations that result in cell shape changes do not influence YAP localization in the embryo. Together our work identifies how various inputs are integrated over a dynamic developmental time course to shape the levels of a key molecular determinant of the first cell fate choice.

Show Abstract
February 27, 2025
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.