645 Publications

Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures

Venugopalan D. Nair , Hanna Pincas, W. Mao , et al.

Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.

Show Abstract

Learning fast, accurate, and stable closures of a kinetic theory of an active fluid

Important classes of active matter systems can be modeled using kinetic theories. However, kinetic theories can be high dimensional and challenging to simulate. Reduced-order representations based on tracking only low-order moments of the kinetic model serve as an efficient alternative, but typically require closure assumptions to model unrepresented higher-order moments. In this study, we present a learning framework based on neural networks that exploits rotational symmetries in the closure terms to learn accurate closure models directly from kinetic simulations. The data-driven closures demonstrate excellent a-priori predictions comparable to the state-of-the-art Bingham closure. We provide a systematic comparison between different neural network architectures and demonstrate that nonlocal effects can be safely ignored to model the closure terms. We develop an active learning strategy that enables accurate prediction of the closure terms across the entire parameter space using a single neural network without the need for retraining. We also propose a data-efficient training procedure based on time-stepping constraints and a differentiable pseudo-spectral solver, which enables the learning of stable closures suitable for a-posteriori inference. The coarse-grained simulations equipped with data-driven closure models faithfully reproduce the mean velocity statistics, scalar order parameters, and velocity power spectra observed in simulations of the kinetic theory. Our differentiable framework also facilitates the estimation of parameters in coarse-grained descriptions conditioned on data.

Show Abstract

Microstructure-Based Modeling of Primary Cilia Mechanics

Nima Mostafazadeh, Y.-N. Young, et al.

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets and simulating the tip-anchored optical tweezer experiment on our computational model, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base.

Show Abstract
April 27, 2024

Self-organized dynamics of a viscous drop with interfacial nematic activity

M. Firouznia , David Saintillan

We study emergent dynamics in a viscous drop subject to interfacial nematic activity. Using hydrodynamic simulations, we show how the interplay of nematodynamics, activity-driven flows and surface deformations gives rise to a sequence of self-organized behaviors of increasing complexity, from periodic braiding motions of topological defects to chaotic defect dynamics and active turbulence, along with spontaneous shape changes and translation. Our findings recapitulate qualitative features of experiments and shed light on the mechanisms underpinning morphological dynamics in active interfaces.

Show Abstract
April 17, 2024

Multiscale simulations of molecular recognition by phase separated MUT-16: A scaffolding protein of Mutator foci

Kumar Gaurav, Virginia Busetto, S. Hanson

Biomolecular recruitment by phase separated condensates has emerged as a key organising principle of biological processes. One such process is the RNA silencing pathway, which regulates gene expression and genomic defense against foreign nucleic acids. In C. elegans, this pathway involves siRNA amplification at perinuclear germ granules named Mutator foci. The formation of Mutator foci depends on the phase separation of MUT-16, acting as a scaffolding protein to recruit other components of the Mutator complex. Earlier studies have indicated a crucial role for an exoribonuclease, MUT-7, in RNA silencing. The recruitment of MUT-7 to Mutator foci is facilitated by a bridging protein, MUT-8. However, how MUT-8 binds to MUT-16 remains elusive. We resolved the molecular drivers of MUT-16 phase separation and the recruitment of MUT-8 using multi-scale molecular dynamics simulations and in vitro experiments. Residue-level coarse-grained simulations predicted the relative phase separation propensities of MUT-16 disordered regions, which we validated by experiments.

Coarse-grained simulations at residue-level and near atomic-resolution also indicated the essential role of aromatic amino acids (Tyr and Phe) in MUT-16 phase separation. Furthermore, coarse-grained and atomistic simulations of MUT-8 N-terminal prion-like domain with phase separated MUT-16 condensate revealed the importance of cation-π interaction between Tyr residues of MUT-8 and Arg/Lys residues of MUT-16. By re-introducing atomistic detail to condensates from coarse-grained and 350 µs all-atom simulations in explicit solvent on Folding@Home, we demonstrate Arg-Tyr interaction surpasses the strength of Lys-Tyr interactions in the recruitment of MUT-8. The atomistic simulations show that the planar guanidinium group of Arg also engages in sp2-π interaction, and hydrogen bonds with the Tyr residues and these additional favorable contacts are missing in the Lys-Tyr interactions. In agreement with simulations, the mutation of seven Arg residues in MUT-16 to Lys and Ala weakens MUT-8 binding in vitro.

Show Abstract
April 15, 2024

Design of Coiled-Coil Protein Nanostructures for Therapeutics and Drug Delivery

D. Renfrew, et al.

Coiled-coil protein motifs have become widely employed in the design of biomaterials. Some of these designs have been studied for use in drug delivery due to the unique ability of coiled-coils to impart stability, oligomerization, and supramolecular assembly. To leverage these properties and improve drug delivery, release, and targeting, a variety of nano- to mesoscale architectures have been adopted. Coiled-coil drug delivery and therapeutics have been developed by using the coiled-coil alone, designing for higher-order assemblies such as fibers and hydrogels, and combining coiled-coil proteins with other biocompatible structures such as lipids and polymers. We review the recent development of these structures and the design criteria used to generate functional proteins of varying sizes and morphologies.

Show Abstract

Deep Learning Sequence Models for Transcriptional Regulation

Deciphering the regulatory code of gene expression and interpreting the transcriptional effects of genome variation are critical challenges in human genetics. Modern experimental technologies have resulted in an abundance of data, enabling the development of sequence-based deep learning models that link patterns embedded in DNA to the biochemical and regulatory properties contributing to transcriptional regulation, including modeling epigenetic marks, 3D genome organization, and gene expression, with tissue and cell-type specificity. Such methods can predict the functional consequences of any noncoding variant in the human genome, even rare or never-before-observed variants, and systematically characterize their consequences beyond what is tractable from experiments or quantitative genetics studies alone. Recently, the development and application of interpretability approaches have led to the identification of key sequence patterns contributing to the predicted tasks, providing insights into the underlying biological mechanisms learned and revealing opportunities for improvement in future models.

Show Abstract

Promoter and Gene-Body RNA-Polymerase II co-exist in partial demixed condensates

Arya Changiarath , Jasper J. Michels, S. Hanson

In cells, transcription is tightly regulated on multiple layers. The condensation of the transcription machinery into distinct phases is hypothesized to spatio-temporally fine tune RNA polymerase II behaviour during two key stages, transcription initiation and the elongation of the nascent RNA transcripts. However, it has remained unclear whether these phases would mix when present at the same time or remain distinct chemical environments; either as multi-phase condensates or by forming entirely separate condensates. Here we combine particle-based multi-scale simulations and experiments in the model organism C. elegans to characterise the biophysical properties of RNA polymerase II condensates. Both simulations and the in vivo work describe a lower critical solution temperature (LCST) behaviour of RNA Polymerase II, with condensates dissolving at lower temperatures whereas higher temperatures promote condensate stability, which highlights that these condensates are physio-chemically distinct from heterochromatin condensates. The LCST behavior of CTD correlates with gradual shifts in the transcription program but is largely uncoupled from the classical stress response. Expanding the simulations we model how the degree of phosphorylation of the disordered C-terminal domain of RNA polymerase II (CTD), which is characteristic for each step of transcription, controls the existence and morphology of multi-phasic condensates. We show that the two phases putatively underpinning the initiation of transcription and transcription elongation constitute distinct chemical environments and are in agreement with RNA polymerase II condensates observed in C. elegans embryos by super resolution microscopy. Our analysis shows how depending on its post transcriptional modifications and its interaction partner a single protein can form multiple partially engulfed condensates, potentially promoting the selective recruitment of additional factors to these two phases.

Show Abstract
March 27, 2024

Supercharged coiled-coil protein with N-terminal decahistidine tag boosts siRNA complexation and delivery efficiency of a lipoproteoplex

Jonathan W. Sun, Joseph S. Thomas, D. Renfrew, et al.

Short interfering RNA (siRNA) therapeutics have soared in popularity due to their highly selective and potent targeting of faulty genes, providing a non-palliative approach to address diseases. Despite their potential, effective transfection of siRNA into cells requires the assistance of an accompanying vector. Vectors constructed from non-viral materials, while offering safer and non-cytotoxic profiles, often grapple with lackluster loading and delivery efficiencies, necessitating substantial milligram quantities of expensive siRNA to confer the desired downstream effects. We detail the recombinant synthesis of a diverse series of coiled-coil supercharged protein (CSP) biomaterials systematically designed to investigate the impact of two arginine point mutations (Q39R and N61R) and decahistidine tags on liposomal siRNA delivery. The most efficacious variant, N8, exhibits a twofold increase in its affinity to siRNA and achieves a twofold enhancement in transfection activity with minimal cytotoxicity in vitro. Subsequent analysis unveils the destabilizing effect of the Q39R and N61R supercharging mutations and the incorporation of C-terminal decahistidine tags on α-helical secondary structure. Cross-correlational regression analyses reveal that the amount of helical character in these mutants is key in N8's enhanced siRNA complexation and downstream delivery efficiency.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.