645 Publications

Aneuploidy Prediction and Tumor Classification with Heterogeneous Hidden Conditional Random Fields

Z. Barutcuoglu, E. Airoldi, V. Dumeaux, R. Schapire, O. Troyanskaya

MOTIVATION:
The heterogeneity of cancer cannot always be recognized by tumor morphology, but may be reflected by the underlying genetic aberrations. Array comparative genome hybridization (array-CGH) methods provide high-throughput data on genetic copy numbers, but determining the clinically relevant copy number changes remains a challenge. Conventional classification methods for linking recurrent alterations to clinical outcome ignore sequential correlations in selecting relevant features. Conversely, existing sequence classification methods can only model overall copy number instability, without regard to any particular position in the genome.

RESULTS:
Here, we present the heterogeneous hidden conditional random field, a new integrated array-CGH analysis method for jointly classifying tumors, inferring copy numbers and identifying clinically relevant positions in recurrent alteration regions. By capturing the sequentiality as well as the locality of changes, our integrated model provides better noise reduction, and achieves more relevant gene retrieval and more accurate classification than existing methods. We provide an efficient L1-regularized discriminative training algorithm, which notably selects a small set of candidate genes most likely to be clinically relevant and driving the recurrent amplicons of importance. Our method thus provides unbiased starting points in deciding which genomic regions and which genes in particular to pursue for further examination. Our experiments on synthetic data and real genomic cancer prediction data show that our method is superior, both in prediction accuracy and relevant feature discovery, to existing methods. We also demonstrate that it can be used to generate novel biological hypotheses for breast cancer.

Show Abstract

Computationally Driven, Quantitative Experiments Discover Genes Required for Mitochondrial Biogenesis

D. Hess, C. Myers, C. Huttenhower, M. Hibbs, A. Hayes, J. Paw, J. Clore, R. Mendoza, B. San Luis, C. Nislow, G. Giaever, M. Costanzo, O. Troyanskaya, A. Caudy

Mitochondria are central to many cellular processes including respiration, ion homeostasis, and apoptosis. Using computational predictions combined with traditional quantitative experiments, we have identified 100 proteins whose deficiency alters mitochondrial biogenesis and inheritance in Saccharomyces cerevisiae. In addition, we used computational predictions to perform targeted double-mutant analysis detecting another nine genes with synthetic defects in mitochondrial biogenesis. This represents an increase of about 25% over previously known participants. Nearly half of these newly characterized proteins are conserved in mammals, including several orthologs known to be involved in human disease. Mutations in many of these genes demonstrate statistically significant mitochondrial transmission phenotypes more subtle than could be detected by traditional genetic screens or high-throughput techniques, and 47 have not been previously localized to mitochondria. We further characterized a subset of these genes using growth profiling and dual immunofluorescence, which identified genes specifically required for aerobic respiration and an uncharacterized cytoplasmic protein required for normal mitochondrial motility. Our results demonstrate that by leveraging computational analysis to direct quantitative experimental assays, we have characterized mutants with subtle mitochondrial defects whose phenotypes were undetected by high-throughput methods.

Show Abstract

Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis

M. Hibbs, C. Myers, C. Huttenhower , D. Hess, K. Li, A. Caudy, O. Troyanskaya

Computational approaches have promised to organize collections of functional genomics data into testable predictions of gene and protein involvement in biological processes and pathways. However, few such predictions have been experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology community. Further, it remains unclear what biological concerns should be taken into account when using computational methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics (doi:10.1371/journal.pgen.1000407). Here we analyze and explore the results of this study that are broadly applicable for computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes representing the genomic background. Our study leads to several conclusions that are important to consider when driving laboratory investigations using computational prediction approaches. While most genes in yeast are already known to participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for annotation of additional gene functions. We find that different analysis techniques and different underlying data can both greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing prediction and validation steps iteratively allows us to more completely characterize a biological area of interest. While this study focused on a specific functional area in yeast, many of these observations may be useful in the contexts of other processes and organisms.

Show Abstract

Selected Proceedings of the First Summit on Translational Bioinformatics 2008

A. Butte, I. Sarkar, M. Ramoni, Y. Lussier, O. Troyanskaya

In 2005, Dr. Elias Zerhouni, Director of the National Institutes of Health (NIH), wrote:

"It is the responsibility of those of us involved in today's biomedical research enterprise to translate the remarkable scientific innovations we are witnessing into health gains for the nation... At no other time has the need for a robust, bidirectional information flow between basic and translational scientists been so necessary."

In that publication, Dr. Zerhouni introduced his ideas to re-engineer the way clinical research was performed in the United States. With the doubling of the NIH budget in the past decade, and coincident completion of the Human Genome Project, there is a perceived need to translate products of the genome era into products for clinical care.

Show Abstract

Coordinated Concentration Changes of Transcripts and Metabolites in Saccharomyces Cerevisiae

P. Bradley, M. Bauer, J. Rabinowitz, O. Troyanskaya

Metabolite concentrations can regulate gene expression, which can in turn regulate metabolic activity. The extent to which functionally related transcripts and metabolites show similar patterns of concentration changes, however, remains unestablished. We measure and analyze the metabolomic and transcriptional responses of Saccharomyces cerevisiae to carbon and nitrogen starvation. Our analysis demonstrates that transcripts and metabolites show coordinated response dynamics. Furthermore, metabolites and gene products whose concentration profiles are alike tend to participate in related biological processes. To identify specific, functionally related genes and metabolites, we develop an approach based on Bayesian integration of the joint metabolomic and transcriptomic data. This algorithm finds interactions by evaluating transcript–metabolite correlations in light of the experimental context in which they occur and the class of metabolite involved. It effectively predicts known enzymatic and regulatory relationships, including a gene–metabolite interaction central to the glycolytic–gluconeogenetic switch. This work provides quantitative evidence that functionally related metabolites and transcripts show coherent patterns of behavior on the genome scale and lays the groundwork for building gene–metabolite interaction networks directly from systems-level data.

Show Abstract

Predicting Cellular Growth from Gene Expression Signatures

E. Airoldi, C. Huttenhower, D. Gresham, C. Lu, A. Caudy, M. Dunham, J. Broach, D. Botstein, O. Troyanskaya

Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

Show Abstract

Computational Analysis of the Yeast Proteome: Understanding and Exploiting Functional Specificity in Genomic Data

C. Huttenhower, C. Myers, M. Hibbs, O. Troyanskaya

Modern experimental techniques have produced a wealth of high-throughput data that has enabled the ongoing genomic revolution. As the field continues to integrate experimental and computational analyzes of this data, it is essential that performance evaluations of high-throughput results be carried out in a consistent and biologically informative manner. Here, we present an overview of evaluation techniques for high-throughput experimental data and computational methods, and we discuss a number of potential pitfalls in this process. These primarily involve the biological diversity of genomic data, which can be masked or misrepresented in overly simplified global evaluations. We describe systems for preserving information about biological context during dataset evaluation, which can help to ensure that multiple different evaluations are more directly comparable. This biological variety in high-throughput data can also be taken advantage of computationally through data integration and process specificity to produce richer systems-level predictions of cellular function. An awareness of these considerations can greatly improve the evaluation and analysis of any high-throughput experimental dataset.

Show Abstract

A Genomewide Functional Network for the Laboratory Mouse

Y. Guan, C. Myers, R. Lu, I. Lemischka, C. Bult, O. Troyanskaya

Establishing a functional network is invaluable to our understanding of gene function, pathways, and systems-level properties of an organism and can be a powerful resource in directing targeted experiments. In this study, we present a functional network for the laboratory mouse based on a Bayesian integration of diverse genetic and functional genomic data. The resulting network includes probabilistic functional linkages among 20,581 protein-coding genes. We show that this network can accurately predict novel functional assignments and network components and present experimental evidence for predictions related to Nanog homeobox (Nanog), a critical gene in mouse embryonic stem cell pluripotency. An analysis of the global topology of the mouse functional network reveals multiple biologically relevant systems-level features of the mouse proteome. Specifically, we identify the clustering coefficient as a critical characteristic of central modulators that affect diverse pathways as well as genes associated with different phenotype traits and diseases. In addition, a cross-species comparison of functional interactomes on a genomic scale revealed distinct functional characteristics of conserved neighborhoods as compared to subnetworks specific to higher organisms. Thus, our global functional network for the laboratory mouse provides the community with a key resource for discovering protein functions and novel pathway components as well as a tool for exploring systems-level topological and evolutionary features of cellular interactomes. To facilitate exploration of this network by the biomedical research community, we illustrate its application in function and disease gene discovery through an interactive, Web-based, publicly available interface at http://mouseNET.princeton.edu.

Show Abstract
September 26, 2008

The Sleipnir Library for Computational Functional Genomics

C. Huttenhower, M. Schroeder, M. Chikina

MOTIVATION:
Biological data generation has accelerated to the point where hundreds or thousands of whole-genome datasets of various types are available for many model organisms. This wealth of data can lead to valuable biological insights when analyzed in an integrated manner, but the computational challenge of managing such large data collections is substantial. In order to mine these data efficiently, it is necessary to develop methods that use storage, memory and processing resources carefully.
RESULTS:
The Sleipnir C++ library implements a variety of machine learning and data manipulation algorithms with a focus on heterogeneous data integration and efficiency for very large biological data collections. Sleipnir allows microarray processing, functional ontology mining, clustering, Bayesian learning and inference and support vector machine tasks to be performed for heterogeneous data on scales not previously practical. In addition to the library, which can easily be integrated into new computational systems, prebuilt tools are provided to perform a variety of common tasks. Many tools are multithreaded for parallelization in desktop or high-throughput computing environments, and most tasks can be performed in minutes for hundreds of datasets using a standard personal computer.
AVAILABILITY:
Source code (C++) and documentation are available at http://function.princeton.edu/sleipnir and compiled binaries are available from the authors on request.

Show Abstract

Assessing the Functional Structure of Genomic Data

C. Huttenhower, O. Troyanskaya

Motivation: The availability of genome-scale data has enabled an abundance of novel analysis techniques for investigating a variety of systems-level biological relationships. As thousands of such datasets become available, they provide an opportunity to study high-level associations between cellular pathways and processes. This also allows the exploration of shared functional enrichments between diverse biological datasets, and it serves to direct experimenters to areas of low data coverage or with high probability of new discoveries.

Results: We analyze the functional structure of Saccharomyces cerevisiae datasets from over 950 publications in the context of over 140 biological processes. This includes a coverage analysis of biological processes given current high-throughput data, a data-driven map of associations between processes, and a measure of similar functional activity between genome-scale datasets. This uncovers subtle gene expression similarities in three otherwise disparate microarray datasets due to a shared strain background. We also provide several means of predicting areas of yeast biology likely to benefit from additional high-throughput experimental screens.

Availability: Predictions are provided in supplementary tables; software and additional data are available from the authors by request.

Show Abstract
June 1, 2008
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.