381 Publications

Encoding Priors with Group Sparsity for Model Learning From Limited and Noisy Biological Data

Suryanarayana Maddu, Dominik Sturm, Bevan L Cheeseman, C. Müller, Ivo F Sbalzarini

Numerical methods for approximately solving partial differential equations (PDE) are at the core of scientific computing. Often, this requires high-resolution or adaptive discretization grids to capture relevant spatio-temporal features in the PDE solution, e.g., in applications like turbulence, combustion, and shock propagation. Numerical approximation also requires knowing the PDE in order to construct problem-specific discretizations. Systematically deriving such solution-adaptive discrete operators, however, is a current challenge. Here we present an artificial neural network architecture for data-driven learning of problemand resolution-specific local discretizations of nonlinear PDEs. Our proposed method achieves numerically stable discretization of the operators in an unknown nonlinear PDE by spatially and temporally adaptive parametric pooling on regular Cartesian grids, and by incorporating knowledge about discrete time integration. Knowing the actual PDE is not necessary, as solution data is sufficient to train the network to learn the discrete operators. A once-trained neural architecture model can be used to predict solutions of the PDE on larger spatial domains and for longer times than it was trained for, hence addressing the problem of PDE-constrained extrapolation from data. We present demonstrative examples on long-term forecasting of hard numerical problems including equation-free forecasting of non-linear dynamics of forced Burgers problem on coarse spatio-temporal grids.

Show Abstract

Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition

Wendy Hui Kyong Chun, A. Barnett

mathematical illustrations by Alex H. Barnett: In Discriminating Data, Wendy Hui Kyong Chun reveals how polarization is a goal—not an error—within big data and machine learning. These methods, she argues, encode segregation, eugenics, and identity politics through their default assumptions and conditions. Correlation, which grounds big data's predictive potential, stems from twentieth-century eugenic attempts to “breed” a better future. Recommender systems foster angry clusters of sameness through homophily. Users are “trained” to become authentically predictable via a politics and technology of recognition. Machine learning and data analytics thus seek to disrupt the future by making disruption impossible.

Show Abstract

Analysis of single-excitation states in quantum optics

Jeremy Hoskins, J. Kaye, M. Rachh, John Schotland

In this paper we analyze the dynamics of single-excitation states, which model the scattering of a single photon from multiple two level atoms. For short times and weak atom-field couplings we show that the atomic amplitudes are given by a sum of decaying exponentials, where the decay rates and Lamb shifts are given by the poles of a certain analytic function. This result is a refinement of the "pole approximation" appearing in the standard Wigner-Weisskopf analysis of spontaneous emission. On the other hand, at large times, the atomic field decays like O(1/t3) with a known constant expressed in terms of the coupling parameter and the resonant frequency of the atoms. Moreover, we show that for stronger coupling, the solutions also feature a collection of oscillatory exponentials which dominate the behavior at long times. Finally, we extend the analysis to the continuum limit in which atoms are distributed according to a given density.

Show Abstract
October 13, 2021

Cardiolipin prevents pore formation in phosphatidylglycerol bacterial membrane models

Cristian Rocha-Roa, Juan David Orjuela, Chad Leidy, P. Cossio, Camilo Aponte-Santamaría

Abstract Several antimicrobial peptides, including magainin and the human cathelicidin LL-37, act by forming pores in bacterial membranes. Bacteria such as Staphylococcus aureus modify their membrane's cardiolipin composition to resist such types of perturbations that compromise their membrane stability. Here, we used molecular dynamics simulations to quantify the role of cardiolipin on the formation of pores in simple bacterial-like membrane models composed of phosphatidylglycerol and cardiolipin mixtures. Cardiolopin modified the structure and ordering of the lipid bilayer, making it less susceptible to mechanical changes. Accordingly, the free-energy barrier for the formation of a transmembrane pore and its kinetic instability augmented by increasing the cardiolipin concentration. This is attributed to the unfavorable positioning of cardiolipin near the formed pore, due to its small polar-head and bulky hydrophobic-body. Overall, our study demonstrates how cardiolipin prevents membrane-pore formation and this constitutes a plausible mechanism used by bacteria to act against stress perturbations and, thereby, gain resistance to antimicrobial agents.

Show Abstract
October 11, 2021

Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful

Y. Yao, Gregor Pirš, Aki Vehtari, Andrew Gelman

Stacking is a widely used model averaging technique that asymptotically yields optimal predictions among linear averages. We show that stacking is most effective when model predictive performance is heterogeneous in inputs, and we can further improve the stacked mixture with a hierarchical model. We generalize stacking to Bayesian hierarchical stacking. The model weights are varying as a function of data, partially-pooled, and inferred using Bayesian inference. We further incorporate discrete and continuous inputs, other structured priors, and time series and longitudinal data. To verify the performance gain of the proposed method, we derive theory bounds, and demonstrate on several applied problems.

Show Abstract
September 27, 2021

Toward performance-portable PETSc for GPU-based exascale systems

Richard Tran Mills, Mark F. Adams, Satish Balay, Jed Brown, Alp Dener, Matthew Knepley, Scott E. Kruger, Hannah Morgan, Todd Munson, Karl Rupp, B. Smith, Stefano Zampini, Hong Zhang, Junchao Zhang

The Portable Extensible Toolkit for Scientific computation (PETSc) library delivers scalable solvers for nonlinear time-dependent differential and algebraic equations and for numerical optimization. The PETSc design for performance portability addresses fundamental GPU accelerator challenges and stresses flexibility and extensibility by separating the programming model used by the application from that used by the library, and it enables application developers to use their preferred programming model, such as Kokkos, RAJA, SYCL, HIP, CUDA, or OpenCL, on upcoming exascale systems. A blueprint for using GPUs from PETSc-based codes is provided, and case studies emphasize the flexibility and high performance achieved on current GPU-based systems.

Show Abstract

latentcor: An R Package for estimating latent correlations from mixed data types

Mingze Huang, C. Müller, Irina Gaynanova

We present `latentcor`, an R package for correlation estimation from data with mixed variable types. Mixed variables types, including continuous, binary, ordinal, zero-inflated, or truncated data are routinely collected in many areas of science. Accurate estimation of correlations among such variables is often the first critical step in statistical analysis workflows. Pearson correlation as the default choice is not well suited for mixed data types as the underlying normality assumption is violated. The concept of semi-parametric latent Gaussian copula models, on the other hand, provides a unifying way to estimate correlations between mixed data types. The R package `latentcor` comprises a comprehensive list of these models, enabling the estimation of correlations between any of continuous/binary/ternary/zero-inflated (truncated) variable types. The underlying implementation takes advantage of a fast multi-linear interpolation scheme with an efficient choice of interpolation grid points, thus giving the package a small memory footprint without compromising estimation accuracy. This makes latent correlation estimation readily available for modern high-throughput data analysis.

Show Abstract
August 20, 2021

A Biologically Plausible Neural Network for Multichannel Canonical Correlation Analysis

David Lipshutz, Y. Bahroun, Siavash Golkar, A. Sengupta, Dmitri B. Chklovskii

Cortical pyramidal neurons receive inputs from multiple distinct neural populations and integrate these inputs in separate dendritic compartments. We explore the possibility that cortical microcircuits implement canonical correlation analysis (CCA), an unsupervised learning method that projects the inputs onto a common subspace so as to maximize the correlations between the projections. To this end, we seek a multichannel CCA algorithm that can be implemented in a biologically plausible neural network. For biological plausibility, we require that the network operates in the online setting and its synaptic update rules are local. Starting from a novel CCA objective function, we derive an online optimization algorithm whose optimization steps can be implemented in a single-layer neural network with multicompartmental neurons and local non-Hebbian learning rules. We also derive an extension of our online CCA algorithm with adaptive output rank and output whitening. Interestingly, the extension maps onto a neural network whose neural architecture and synaptic updates resemble neural circuitry and non-Hebbian plasticity observed in the cortex.

Show Abstract

Phase Retrieval with Holography and Untrained Priors: Tackling the Challenges of Low-Photon Nanoscale Imaging

H. Lawrence, D. Barmherzig, Henry Li, M. Eickenberg, M. Gabrié

Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measurements, and underlies numerous imaging modalities, such as Coherent Diffraction Imaging (CDI). A variant of this setup, known as holography, includes a reference object that is placed adjacent to the specimen of interest before measurements are collected. The resulting inverse problem, known as holographic phase retrieval, is well-known to have improved problem conditioning relative to the original. This innovation, i.e. Holographic CDI, becomes crucial at the nanoscale, where imaging specimens such as viruses, proteins, and crystals require low-photon measurements. This data is highly corrupted by Poisson shot noise, and often lacks low-frequency content as well. In this work, we introduce a dataset-free deep learning framework for holographic phase retrieval adapted to these challenges. The key ingredients of our approach are the explicit and flexible incorporation of the physical forward model into an automatic differentiation procedure, the Poisson log-likelihood objective function, and an optional untrained deep image prior. We perform extensive evaluation under realistic conditions. Compared to competing classical methods, our method recovers signal from higher noise levels and is more resilient to suboptimal reference design, as well as to large missing regions of low frequencies in the observations. To the best of our knowledge, this is the first work to consider a dataset-free machine learning approach for holographic phase retrieval.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.