1398 Publications

Chemodynamical Signatures of Bar Resonances in the Galactic Disk: Current Data and Future Prospects

A. Wheeler , I. Abril-Cabezas, W. H. Trick, F. Fragkoudi, M. Ness

The Galactic disk exhibits complex chemical and dynamical substructure thought to be induced by the bar, spiral arms, and satellites. Here, we explore the chemical signatures of bar resonances in action and velocity space, and characterize the differences between the signatures of corotation (CR) and higher-order resonances using test particle simulations. Thanks to recent surveys, we now have large data sets containing metallicities and kinematics of stars outside the solar neighborhood. We compare the simulations to the observational data from Gaia EDR3 and LAMOST DR5 and find weak evidence for a slow bar with the "hat" moving group (250 km s−1 ≲ vϕ ≲ 270 km s−1) associated with its outer Lindblad resonance and "Hercules" (170 km s−1 ≲ vϕ ≲ 195 km s−1) with CR. While constraints from current data are limited by their spatial footprint, stars closer in azimuth than the Sun to the bar's minor axis show much stronger signatures of the bar's outer Lindblad and CR resonances in test particle simulations. Future data sets with greater azimuthal coverage, including the final Gaia data release, will allow reliable chemodynamical identification of bar resonances.

Show Abstract

The Open Cluster Chemical Abundances and Mapping Survey. VI. Galactic Chemical Gradient Analysis from APOGEE DR17

N. Meyers, J. Donor, T. Spoo, P. M. Frinchaboy, K. Cunha, A. Price-Whelan, S. R. Majewski, R. L. Beaton, G. Zasowski, J. O'Connell, A. E. Ray, D. Bizyaev, C. Chiappini, D. A. García-Hernández, D. Geisler, H. Jönsson, R. R. Lane, P. Longa-Peña, I. Minchev, D. Minniti, C. Nitschelm, A. Roman-Lopes

The goal of the Open Cluster Chemical Abundances and Mapping (OCCAM) survey is to constrain key Galactic dynamic and chemical evolution parameters by the construction and analysis of a large, comprehensive, uniform data set of infrared spectra for stars in hundreds of open clusters. This sixth contribution from the OCCAM survey presents analysis of SDSS/APOGEE Data Release 17 (DR17) results for a sample of stars in 150 open clusters, 94 of which we designate to be "high-quality" based on the appearance of their color–magnitude diagram. We find the APOGEE DR17-derived [Fe/H] values to be in good agreement with those from previous high-resolution spectroscopic open cluster abundance studies. Using a subset of the high-quality sample, the Galactic abundance gradients were measured for 16 chemical elements, including [Fe/H], for both Galactocentric radius (RGC) and guiding center radius (Rguide). We find an overall Galactic [Fe/H] versus RGC gradient of −0.073 ± 0.002 dex kpc−1 over the range of 6 > RGC < 11.5 kpc, and a similar gradient is found for [Fe/H] versus Rguide. Significant Galactic abundance gradients are also noted for O, Mg, S, Ca, Mn, Na, Al, K, and Ce. Our large sample additionally allows us to explore the evolution of the gradients in four age bins for the remaining 15 elements.

Show Abstract

Modules for Experiments in Stellar Astrophysics (MESA): Time-Dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure

A. Jermyn, E. B. Bauer, J. Schwab, R. Farmer, W. H. Ball, E. P. Bellinger, A. Dotter, M. Joyce, P. Marchant, J. S. G. Mombarg, W. M. Wolf, T. L. S. Wong, G. C. Cinquegrana, E. Farrell, R. Smolec, A. Thoul, M. Cantiello, F. Herwig, O. Toloza, L. Bildsten, R. H. D. Townsend, F. X. Timmes

We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). The new auto_diff module implements automatic differentiation in MESA, an enabling capability that alleviates the need for hard-coded analytic expressions or finite difference approximations. We significantly enhance the treatment of the growth and decay of convection in MESA with a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron degenerate ignition events. We strengthen MESA's implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars in MESA we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator split nuclear burning mode. We close by discussing major updates to MESA's software infrastructure that enhance source code development and community engagement.

Show Abstract
August 7, 2022

Quantitative models for building and growing fated small cell networks

Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.

Show Abstract

Streams on FIRE: Populations of Detectable Stellar Streams in the Milky Way and FIRE

N. Shipp, N. Panithanpaisal, L. Necib, R. Sanderson, D. Erkal, T. S. Li, I. B. Santistevan, A. Wetzel, L. R. Cullinane, A. P. Ji, S.E. Koposov, K. Kuehn, G. F. Lewis, A. B. Pace, D. B. Zucker, J. Bland-Hawthorn, E. Cunningham, S. Y. Kim, S. Lilleengen, J. Moreno, S. Sharma

We present the first detailed study comparing the populations of stellar streams in cosmological simulations to observed Milky Way dwarf galaxy streams. In particular, we compare streams identified around Milky Way analogs in the FIRE-2 simulations to stellar streams observed by the Southern Stellar Stream Spectroscopic Survey (S5). For an accurate comparison between the stream populations, we produce mock Dark Energy Survey (DES) observations of the FIRE streams and estimate the detectability of their tidal tails and progenitors. The number and stellar mass distributions of detectable stellar streams is consistent between observations and simulations. However, there are discrepancies in the distributions of pericenters and apocenters, with the detectable FIRE streams, on average, forming at larger pericenters (out to > 110 kpc) and surviving only at larger apocenters (> 40 kpc) than those observed in the Milky Way. We find that the population of high-stellar mass dwarf galaxy streams in the Milky Way is incomplete. Interestingly, a large fraction of the FIRE streams would only be detected as satellites in DES-like observations, since their tidal tails are too low-surface brightness to be detectable. We thus predict a population of yet-undetected tidal tails around Milky Way satellites, as well as a population of fully undetected low surface brightness stellar streams, and estimate their detectability with the Rubin Observatory. Finally, we discuss the causes and implications of the discrepancies between the stream populations in FIRE and the Milky Way, and explore future avenues for tests of satellite disruption in cosmological simulations.

Show Abstract
August 3, 2022

Reading the CARDs: The Imprint of Accretion History in the Chemical Abundances of the Milky Way’s Stellar Halo

E. Cunningham, R. Sanderson, K. Johnston, N. Panithanpaisal, M. Ness, A. Wetzel, S. R. Loebman, I. Escala, D. Horta, C-A. Faucher-Giguère

In the era of large-scale spectroscopic surveys in the Local Group, we can explore using chemical abundances of halo stars to study the star formation and chemical enrichment histories of the dwarf galaxy progenitors of the Milky Way (MW) and M31 stellar halos. In this paper, we investigate using the chemical abundance ratio distributions (CARDs) of seven stellar halos from the Latte suite of FIRE-2 simulations. We attempt to infer galaxies' assembly histories by modeling the CARDs of the stellar halos of the Latte galaxies as a linear combination of template CARDs from disrupted dwarfs, with different stellar masses M⋆ and quenching times t100. We present a method for constructing these templates using present-day dwarf galaxies. For four of the seven Latte halos studied in this work, we recover the mass spectrum of accreted dwarfs to a precision of <10 percent. For the fraction of mass accreted as a function of t100, we find the residuals of 20–30 percent for five of the seven simulations. We discuss the failure modes of this method, which arise from the diversity of star formation and chemical enrichment histories that dwarf galaxies can take. These failure cases can be robustly identified by the high model residuals. Although the CARDs modeling method does not successfully infer the assembly histories in these cases, the CARDs of these disrupted dwarfs contain signatures of their unusual formation histories. Our results are promising for using CARDs to learn more about the histories of the progenitors of the MW and M31 stellar halos.

Show Abstract

On the stability of tidal streams in action space

A. Arora, R. Sanderson, N. Panithanpaisal, A. Wetzel, N. Garavito-Camargo, E. Cunningham

In the Gaia era it is increasingly apparent that traditional static, parameterized models are insufficient to describe the mass distribution of our complex, dynamically evolving Milky Way (MW). In this work, we compare different time-evolving and time-independent representations of the gravitational potentials of simulated MW-mass galaxies from the FIRE-2 suite of cosmological baryonic simulations. Using these potentials, we calculate actions for star particles in tidal streams around three galaxies with varying merger histories at each snapshot from 7 Gyr ago to the present day. We determine the action-space coherence preserved by each model using the Kullback-Leibler Divergence to gauge the degree of clustering in actions and the relative stability of the clusters over time. We find that all models produce a clustered action space for simulations with no significant mergers. However, a massive (mass ratio prior to infall more similar than 1:8) interacting galaxy not present in the model will result in mischaracterized orbits for stars most affected by the interaction. The locations of the action space clusters (i.e. the orbits of the stream stars) are only preserved by the time-evolving model, while the time-independent models can lose significant amounts of information as soon as 0.5--1 Gyr ago, even if the system does not undergo a significant merger. Our results imply that reverse-integration of stream orbits in the MW using a fixed potential is likely to give incorrect results if integrated longer than 0.5 Gyr into the past.

Show Abstract
July 27, 2022

Multiple phase spirals suggest multiple origins in Gaia DR3

J. Hunt, A. Price-Whelan, K. Johnston, E. Darragh-Ford

Gaia Data Release 2 revealed that the Milky Way contains significant indications of departures from equilibrium in the form of asymmetric features in the phase space density of stars in the Solar neighbourhood. One such feature is the z–vz phase spiral, interpreted as the response of the disc to the influence of a perturbation perpendicular to the disc plane, which could be external (e.g. a satellite) or internal (e.g. the bar or spiral arms). In this work, we use Gaia Data Release 3 to dissect the phase spiral by dividing the local data set into groups with similar azimuthal actions, Jϕ, and conjugate angles, θϕ, which selects stars on similar orbits and at similar orbital phases, thus having experienced similar perturbations in the past. These divisions allow us to explore areas of the Galactic disc larger than the surveyed region. The separation improves the clarity of the z–vz phase spiral and exposes changes to its morphology across the different action-angle groups. In particular, we discover a transition to two armed ‘breathing spirals’ in the inner Milky Way. We conclude that the local data contain signatures of not one, but multiple perturbations with the prospect to use their distinct properties to infer the properties of the interactions that caused them.

Show Abstract

Canary in the cardiac-valve coal mine: Flow velocity and inferred shear during prosthetic valve closure –predictors of blood damage and clotting

Lawrence N. Scotten, E. Kolahdouz

To demonstrate a clear link between predicted blood shear forces during valve closure and thrombogenicity that explains the thrombogenic difference between tissue and mechanical valves and provides a practical metric to develop and refine prosthetic valve designs for reduced thrombogenicity.

Show Abstract

Data-driven Derivation of Stellar Properties from Photometric Time Series Data Using Convolutional Neural Networks

K. Blancato, M. Ness, D. Huber, Y. (Lucy) Lu, R. Angus

Stellar variability is driven by a multitude of internal physical processes that depend on fundamental stellar properties. These properties are our bridge to reconciling stellar observations with stellar physics and to understand the distribution of stellar populations within the context of galaxy formation. Numerous ongoing and upcoming missions are charting brightness fluctuations of stars over time, which encode information about physical processes such as the rotation period, evolutionary state (such as effective temperature and surface gravity), and mass (via asteroseismic parameters). Here, we explore how well we can predict these stellar properties, across different evolutionary states, using only photometric time-series data. To do this, we implement a convolutional neural network, and with data-driven modeling we predict stellar properties from light curves of various baselines and cadences. Based on a single quarter of Kepler data, we recover the stellar properties, including the surface gravity for red giant stars (with an uncertainty of ≲0.06 dex) and rotation period for main-sequence stars (with an uncertainty of ≲5.2 days, and unbiased from ≈5 to 40 days). Shortening the Kepler data to a 27 days Transiting Exoplanet Survey Satellite–like baseline, we recover the stellar properties with a small decrease in precision, ∼0.07 for log g and ∼5.5 days for Prot, unbiased from ≈5 to 35 days. Our flexible data-driven approach leverages the full information content of the data, requires minimal or no feature engineering, and can be generalized to other surveys and data sets. This has the potential to provide stellar property estimates for many millions of stars in current and future surveys.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates