2005 Publications

Decomposing imaginary time Feynman diagrams using separable basis functions: Anderson impurity model strong coupling expansion

J. Kaye, H. Strand, D. Golez

We present a deterministic algorithm for the efficient evaluation of imaginary time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an $M$th-order diagram at inverse temperature $\beta$ and spectral width $\omega_{\max}$ from $\mathcal{O}((\beta \omega_{\max})^{2M-1})$ for a direct quadrature to $\mathcal{O}(M (\log (\beta \omega_{\max}))^{M+1})$, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multi-band impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca$_2$RuO$_4$, demonstrating the promise of the method for modeling realistic strongly correlated multi-band materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust black-box evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.

Show Abstract

Influence of surface viscosities on the electrodeformation of a prolate viscous drop

H. Nganguia, Y.-N. Young, et al.

Contaminants and other agents are often present at the interface between two fluids, giving rise to rheological properties such as surface shear and dilatational viscosities. The dynamics of viscous drops with interfacial viscosities has attracted greater interest in recent years, due to the influence of surface rheology on deformation and the surrounding flows. We investigate the effects of shear and dilatational viscosities on the electro-deformation of a viscous drop using the Taylor–Melcher leaky dielectric model. We use a large deformation analysis to derive an ordinary differential equation for the drop shape. Our model elucidates the contributions of each force to the overall deformation of the drop and reveals a rich range of dynamic behaviors that show the effects of surface viscosities and their dependence on rheological and electrical properties of the system. We also examine the physical mechanisms underlying the observed behaviors by analyzing the surface dilatation and surface deformation.

Show Abstract
December 23, 2023

Finite Temperature Minimal Entangled Typical Thermal States Impurity Solver

We present a minimally entangled typical thermal state (METTS) quantum impurity solver for general multi-orbital systems at finite temperatures. We introduce an improved estimator for the single-particle Green's function that strongly reduces the large fluctuations at long imaginary time and low temperature, which were a severe limitation of the original algorithm. In combination with the fork tensor product states ansatz, we obtain a dynamical mean field theory (DMFT) quantum impurity solver, which we benchmark for single and three-band models down to low temperatures, including the effect of spin-orbit coupling in a realistic DMFT computation for the Hund's metal Sr2RuO4 down to low temperatures.

Show Abstract

Prebifurcation enhancement of imbibition-drainage hysteresis cycles

I. Lavi, et al.

The efficient transport of fluids through disordered media requires a thorough understanding of how the driving rate affects two-phase interface propagation. Despite our understanding of front dynamics in homogeneous environments, as well as how medium heterogeneities shape fluid interfaces at rest, little is known about the effects of localized topographical variations on large-scale interface dynamics. To gain physical insights into this problem, we study here oil-air displacements through an “imperfect” Hele-Shaw cell. Combining experiments, numerical simulations, and theory, we show that the flow rate dramatically alters the interface response to a porous constriction as one approaches the Saffman-Taylor instability, strictly under stable conditions. This gives rise to asymmetric imbibition–drainage hysteresis cycles that feature divergent extensions and nonlocal effects, all of which are aptly captured and explained by a minimal free boundary model.

Show Abstract

Interpretable neural architecture search and transfer learning for understanding CRISPR–Cas9 off-target enzymatic reactions

Finely-tuned enzymatic pathways control cellular processes, and their dysregulation can lead to disease. Creating predictive and interpretable models for these pathways is challenging because of the complexity of the pathways and of the cellular and genomic contexts. Here we introduce Elektrum, a deep learning framework which addresses these challenges with data-driven and biophysically interpretable models for determining the kinetics of biochemical systems. First, it uses in vitro kinetic assays to rapidly hypothesize an ensemble of high-quality Kinetically Interpretable Neural Networks (KINNs) that predict reaction rates. It then employs a novel transfer learning step, where the KINNs are inserted as intermediary layers into deeper convolutional neural networks, fine-tuning the predictions for reaction-dependent in vivo outcomes. Elektrum makes effective use of the limited, but clean in vitro data and the complex, yet plentiful in vivo data that captures cellular context. We apply Elektrum to predict CRISPR-Cas9 off-target editing probabilities and demonstrate that Elektrum achieves state-of-the-art performance, regularizes neural network architectures, and maintains physical interpretability

Show Abstract

Explainable Equivariant Neural Networks for Particle Physics: PELICAN

A. Bogatskii, Timothy Hoffman, David W. Miller, Jan T. Offermann, Xiaoyang Liu

PELICAN is a novel permutation equivariant and Lorentz invariant or covariant aggregator network designed to overcome common limitations found in architectures applied to particle physics problems. Compared to many approaches that use non-specialized architectures that neglect underlying physics principles and require very large numbers of parameters, PELICAN employs a fundamentally symmetry group-based architecture that demonstrates benefits in terms of reduced complexity, increased interpretability, and raw performance. We present a comprehensive study of the PELICAN algorithm architecture in the context of both tagging (classification) and reconstructing (regression) Lorentz-boosted top quarks, including the difficult task of specifically identifying and measuring the $W$-boson inside the dense environment of the Lorentz-boosted top-quark hadronic final state. We also extend the application of PELICAN to the tasks of identifying quark-initiated vs.~gluon-initiated jets, and a multi-class identification across five separate target categories of jets. When tested on the standard task of Lorentz-boosted top-quark tagging, PELICAN outperforms existing competitors with much lower model complexity and high sample efficiency. On the less common and more complex task of 4-momentum regression, PELICAN also outperforms hand-crafted, non-machine learning algorithms. We discuss the implications of symmetry-restricted architectures for the wider field of machine learning for physics.

Show Abstract

Peak-agnostic high-resolution cis-regulatory circuitry mapping using single cell multiome data

Zidong Zhang, X. Chen, O. Troyanskaya, et al.

Single same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene expression. We present CREMA, a framework that recovers the full cis-regulatory circuitry by modeling gene expression and chromatin activity in individual cells without peak-calling or cell type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing methods that fail to identify about half of functional regulatory elements which are outside the called chromatin ‘peaks’. These circuit sites outside called peaks are shown to be important cell type specific functional regulatory loci, sufficient to distinguish individual cell types. Analysis of mouse pituitary data identifies a Gata2-circuit for the gonadotrope-enriched disease-associated Pcsk1 gene, which is experimentally validated by reduced gonadotrope expression in a gonadotrope conditional Gata2-knockout model. We present a web accessible human immune cell regulatory circuit resource, and provide CREMA as an R package.

Show Abstract

Soft matter roadmap

Jean-Louis Barrat , Andrea J Liu

Soft materials are usually defined as materials made of mesoscopic entities, often self-organised, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is enormous, and controlling or improving their properties is the focus of many efforts. From a fundamental perspective, the possibility of manipulating soft material properties, by tuning interactions between constituents and by applying external perturbations, gives rise to an almost unlimited variety in physical properties. Together with the relative ease to observe and characterise them, this renders soft matter systems powerful model systems to investigate statistical physics phenomena, many of them relevant as well to hard condensed matter systems. Understanding the emerging properties from mesoscale constituents still poses enormous challenges, which have stimulated a wealth of new experimental approaches, including the synthesis of new systems with, e.g. tailored self-assembling properties, or novel experimental techniques in imaging, scattering or rheology. Theoretical and numerical methods, and coarse-grained models, have become central to predict physical properties of soft materials, while computational approaches that also use machine learning tools are playing a progressively major role in many investigations. This Roadmap intends to give a broad overview of recent and possible future activities in the field of soft materials, with experts covering various developments and challenges in material synthesis and characterisation, instrumental, simulation and theoretical methods as well as general concepts.

Show Abstract

Dynamical correlation functions from complex time evolution

We present an approach to tame the growth of entanglement during time evolution by tensor network methods. It combines time evolution in the complex plane with a perturbative and controlled reconstruction of correlation functions on the real-time axis. We benchmark our approach on the single impurity Anderson model. Compared to purely real-time evolution, the complex time evolution significantly reduces the required bond dimension to obtain the spectral function. Notably, our approach yields self-energy results with high precision at low frequencies, comparable to numerical renormalization group (NRG) results, and it successfully captures the exponentially small Kondo energy scale.

Show Abstract

Building a “trap model” of glassy dynamics from a local structural predictor of rearrangements

S. A. Ridout, I. Tah, A. J. Liu

Here we introduce a variation of the trap model of supercooled liquids based on softness, a particle-based variable identified by machine learning that quantifies the local structural environment and energy barrier for the particle to rearrange. As in the trap model, we assume that each particle's softness, and hence energy barrier, evolves independently. We show that our model makes qualitatively reasonable predictions of behaviors such as the dependence of fragility on density in a model supercooled liquid. We also show failures of the model, indicating in some cases signs that softness may be missing important information, and in other cases features that may only be explained by correlations neglected in the trap model.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates