2573 Publications

Weighing the Galactic disk using phase-space spirals

A. Widmark, J. Hunt, C. Laporte, G. Monari

In this fourth article on weighing the Galactic disk using the shape of the phase-space spiral, we have tested our method on a billion particle three-dimensional N-body simulation, comprised of a Milky Way like host galaxy and a merging dwarf satellite. The main purpose of this work was to test the validity of our model’s fundamental assumptions that the spiral inhabits a locally static and vertically separable gravitational potential. These assumptions might be compromised in the complex kinematic system of a disturbed three-dimensional disk galaxy; in fact, the statistical uncertainty and any potential biases related to these assumptions are expected to be amplified for this simulation, which differs from the Milky Way in that it is more strongly perturbed and has a phase-space spiral that inhabits higher vertical energies. We constructed 44 separate data samples from different spatial locations in the simulated host galaxy. Our method produced accurate results for the vertical gravitational potential of these 44 data samples, with an unbiased distribution of errors with a standard deviation of 7 percent. We also tested our method under severe and unknown spatially dependent selection effects, also with robust results; this sets it apart from traditional dynamical mass measurements that are based on the assumption of a steady state and which are highly sensitive to unknown or poorly modelled incompleteness. Hence, we will be able to make localised mass measurements of distant regions in the Milky Way disk, which would otherwise be compromised by complex and poorly understood selection effects.

Show Abstract

Exploring the Sgr–Milky Way–disk Interaction Using High-resolution N-body Simulations

M. Bennett, J. Bovy, J. Hunt

The ongoing merger of the Sagittarius (Sgr) dwarf galaxy with the Milky Way is believed to strongly affect the dynamics of the Milky Way's disk. We present a suite of 13 N-body simulations, with 500 million–1 billion particles, modeling the interaction between the Sgr dwarf galaxy and the Galactic disk. To quantify the perturbation to the disk's structure and dynamics in the simulation, we compute the number count asymmetry and the mean vertical velocity in a solar-neighborhood-like volume. We find that, overall, the trends in the simulations match those seen in a simple one-dimensional model of the interaction. We explore the effects of changing the mass model of Sgr, the orbital kinematics of Sgr, and the mass of the Milky Way halo. We find that none of the simulations match the observations of the vertical perturbation using Gaia Data Release 2. In the simulation that is the most similar, we find that the final mass of Sgr far exceeds the observed mass of the Sgr remnant, the asymmetry wavelength is too large, and the shape of the asymmetry does not match past z ≈ 0.7 kpc. We therefore conclude that our simulations support the conclusion that Sgr alone could not have caused the observed perturbation to the solar neighborhood.

Show Abstract

Similarities behind the high- and low-α disc: small intrinsic abundance scatter and migrating stars

Y. (Lucy) Lu, M. Ness, T. Buck, J. C. Zinn, K. Johnston

The detailed age-chemical abundance relations of stars measure time-dependent chemical evolution. These trends offer strong empirical constraints on nucleosynthetic processes, as well as the homogeneity of star-forming gas. Characterizing chemical abundances of stars across the Milky Way over time has been made possible very recently, thanks to surveys like Gaia, APOGEE, and Kepler. Studies of the low-α disc have shown that individual elements have unique age–abundance trends and the intrinsic dispersion around these relations is small. In this study, we examine and compare the age distribution of stars across both the high and low-α disc and quantify the intrinsic dispersion of 16 elements around their age–abundance relations at [Fe/H] = 0 using APOGEE DR16. We examine the age–metallicity relation and visualize the temporal and spatial distribution of disc stars in small chemical cells. We find: (1) the high-α disc has shallower age–abundance relations compared to the low-α disc, but similar median intrinsic dispersions of ∼0.03 dex; (2) turnover points in the age-[Fe/H] relations across radius for both the high- and low-α disc. The former constrains the mechanisms that set similar intrinsic dispersions, regardless of differences in the enrichment history, for stars in both disc, and the latter indicates the presence of radial migration in both disc. Our study is accompanied by an age catalogue for 64 317 stars in APOGEE derived using THE CANNON with a median uncertainty of 1.5 Gyr (26 per cent; APO-CAN stars), and a red clump catalogue of 22 031 stars with a contamination rate of 2.7 per cent.

Show Abstract

Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms

Zidong Zhang, Michel Zamojski, O. Troyanskaya, et al

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity.

Show Abstract

Accuracy of power spectra in dissipationless cosmological simulations

Sara Maleubre, Daniel Eisenstein, L. Garrison, Michael Joyce

We exploit a suite of large \emph{N}-body simulations (up to N=40963) performed with \Abacus, of scale-free models with a range of spectral indices n, to better understand and quantify convergence of the matter power spectrum. Using self-similarity to identify converged regions, we show that the maximal wavenumber resolved at a given level of accuracy increases monotonically as a function of time. At the 1\% level it starts at early times from a fraction of kΛ, the Nyquist wavenumber of the initial grid, and reaches at most, if the force softening is sufficiently small, ∼2−3kΛ at the very latest times we evolve to. At the 5% level, accuracy extends up to wavenumbers of order 5kΛ at late times. Expressed as a suitable function of the scale-factor, accuracy shows a very simple n-dependence, allowing a extrapolation to place conservative bounds on the accuracy of \emph{N}-body simulations of non-scale free models like LCDM. We note that deviations due to discretization in the converged range are not well modelled by shot noise, and subtracting it in fact degrades accuracy. Quantitatively our findings are broadly in line with the conservative assumptions about resolution adopted by recent studies using large cosmological simulations (e.g. Euclid Flagship) aiming to constrain the mildly non-linear regime. On the other hand, we remark that conclusions about small scale clustering (e.g. concerning the validity of stable clustering) obtained using PS data at wavenumbers larger than a few kΛ may need revision in light of our convergence analysis.

Show Abstract

Enhanced clamshell swimming with asymmetric beating at low Reynolds number

Shiyuan Hu, Jun Zhang, M. Shelley

A single flexible filament can be actuated to escape from the scallop theorem and generate net propulsion at low Reynolds number. In this work, we study the dynamics of a simple boundary-driven multi-filament swimmer, a two-arm clamshell actuated at the hinged point, using a nonlocal slender body approximation with full hydrodynamic interactions. We first consider an elastic clamshell consisted of flexible filaments with intrinsic curvature, and then build segmental models consisted of rigid segments connected by different mechanical joints with different forms of response torques. The simplicity of the system allows us to fully explore the effect of various parameters on the swimming performance. Optimal included angles and elastoviscous numbers are identified. The segmental models capture the characteristic dynamics of the elastic clamshell. We further demonstrate how the swimming performance can be significantly enhanced by the asymmetric beating patterns induced by biased torques.

Show Abstract
March 4, 2022

Putting in the Erk: Growth factor signaling and mesoderm morphogenesis

Sarah E. McFann, S. Shvartsman, Jared E. Toettcher

It has long been known that FGF signaling contributes to mesoderm formation, a germ layer found in triploblasts that is composed of highly migratory cells that give rise to muscles and to the skeletal structures of vertebrates. FGF signaling activates several pathways in the developing mesoderm, including transient activation of the Erk pathway, which triggers mesodermal fate specification through the induction of the gene brachyury and activates morphogenetic programs that allow mesodermal cells to position themselves in the embryo. In this review, we discuss what is known about the generation and interpretation of transient Erk signaling in mesodermal tissues across species. We focus specifically on mechanisms that translate the level and duration of Erk signaling into cell fate and cell movement instructions and discuss strategies for further interrogating the role that Erk signaling dynamics play in mesodermal gastrulation and morphogenesis.

Show Abstract

How Cross-Link Numbers Shape the Large-Scale Physics of Cytoskeletal Materials

Sebastian Fürthauer, M. Shelley

Cytoskeletal networks are the main actuators of cellular mechanics, and a foundational example for active matter physics. In cytoskeletal networks, motion is generated on small scales by filaments that push and pull on each other via molecular-scale motors. These local actuations give rise to large-scale stresses and motion. To understand how microscopic processes can give rise to self-organized behavior on larger scales it is important to consider what mechanisms mediate long-ranged mechanical interactions in the systems. Two scenarios have been considered in the recent literature. The first scenario is systems that are relatively sparse, in which most of the large-scale momentum transfer is mediated by the solvent in which cytoskeletal filaments are suspended. The second scenario is systems in which filaments are coupled via cross-link molecules throughout. Here, we review the differences and commonalities between the physics of these two regimes. We also survey the literature for the numbers that allow us to place a material within either of these two classes.

Show Abstract

Debye source representations for type-I superconductors, I: The static type I case

C. Epstein, M. Rachh
In this note, we analyze the classical magneto-static approach to the theory of type I superconductors, and a Debye source representation that can be used numerically to solve the resultant equations. We also prove that one of the fields, J−, found within the superconductor via the London equations, is the physical current in that the outgoing part of the magnetic field is given as the Biot-Savart integral of J−. Finally, we compute the static currents for moderate values of London penetration depth, λL, for a sphere, a stellarator-like geometry and a two-holed torus.
Show Abstract

Mapping spatial frequency preferences across human primary visual cortex

B. Broderick, E. P. Simoncelli, Jonathan Winawer

Neurons in primate visual cortex (area V1) are tuned for spatial frequency, in a manner that depends on their position in the visual field. Several studies have examined this dependency using fMRI, reporting preferred spatial frequencies (tuning curve peaks) of V1 voxels as a function of eccentricity, but their results differ by as much as two octaves, presumably due to differences in stimuli, measurements, and analysis methodology. Here, we characterize spatial frequency tuning at a millimeter resolution within human primary visual cortex, across stimulus orientation and visual field locations. We measured fMRI responses to a novel set of stimuli, constructed as sinusoidal gratings in log-polar coordinates, which include circular, radial, and spiral geometries. For each individual stimulus, the local spatial frequency varies inversely with eccentricity, and for any given location in the visual field, the full set of stimuli span a broad range of spatial frequencies and orientations. Over the measured range of eccentricities, the preferred spatial frequency is well-fit by a function that varies as the inverse of the eccentricity plus a small constant. We also find small but systematic effects of local stimulus orientation, defined in both absolute coordinates and relative to visual field location. Specifically, peak spatial frequency is higher for pinwheel than annular stimuli and for horizontal than vertical stimuli.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.