2005 Publications

Entanglement and Charge-Sharpening Transitions in U(1) Symmetric Monitored Quantum Circuits

Utkarsh Agrawal, Aidan Zabalo, K. Chen, Justin H. Wilson, Andrew C. Potter, J. H. Pixley, Sarang Gopalakrishnan, Romain Vasseur
Monitored quantum circuits can exhibit an entanglement transition as a function of the rate of measurements, stemming from the competition between scrambling unitary dynamics and disentangling projective measurements. We study how entanglement dynamics in non-unitary quantum circuits can be enriched in the presence of charge conservation, using a combination of exact numerics and a mapping onto a statistical mechanics model of constrained hard-core random walkers. We uncover a charge-sharpening transition that separates different scrambling phases with volume-law scaling of entanglement, distinguished by whether measurements can efficiently reveal the total charge of the system. We find that while Rényi entropies grow sub-ballistically as t in the absence of measurement, for even an infinitesimal rate of measurements, all average Rényi entropies grow ballistically with time ∼t. We study numerically the critical behavior of the charge-sharpening and entanglement transitions in U(1) circuits, and show that they exhibit emergent Lorentz invariance and can also be diagnosed using scalable local ancilla probes. Our statistical mechanical mapping technique readily generalizes to arbitrary Abelian groups, and offers a general framework for studying dissipatively-stabilized symmetry-breaking and topological orders.
Show Abstract

Compressed Sensing in the Presence of Speckle Noise

W. Zhou, Shirin Jalali, Arian Maleki

Speckle or multiplicative noise is a critical issue in coherence-based imaging systems, such as synthetic aperture radar and optical coherence tomography. Existence of speckle noise considerably limits the applicability of such systems by degrading their performance. On the other hand, the sophistications that arise in the study of multiplicative noise have so far impeded theoretical analysis of such imaging systems. As a result, the current acquisition technology relies on heuristic solutions, such as oversampling the signal and converting the problem into a denoising problem with multiplicative noise. This paper attempts to bridge the gap between theory and practice by providing the first theoretical analysis of such systems. To achieve this goal the log-likelihood function corresponding to measurement systems with speckle noise is characterized. Then employing compression codes to model the source structure, for the case of under-sampled measurements, a compression-based maximum likelihood recovery method is proposed. The mean squared error (MSE) performance of the proposed method is characterized and is shown to scale as O(klognm−−−−−√) , where k , m and n denote the intrinsic dimension of the signal class according to the compression code, the number of observations, and the ambient dimension of the signal, respectively. This result, while in contrast to imaging systems with additive noise in which MSE scales as O(klognm) , suggests that if the signal class is structured (i.e., k≪n ), accurate recovery of a signal from under-determined measurements is still feasible, even in the presence of speckle noise. Simulation results are presented that suggest image recovery under multiplicative noise is inherently more challenging than additive noise, and that the derived theoretical results are sharp

Show Abstract

Class of distorted Landau levels and Hall phases in a two-dimensional electron gas subject to an inhomogeneous magnetic field

Dominik Sidler, Vasil Rokaj, Michael Ruggenthaler, A. Rubio
An analytic closed form solution is derived for the bound states of electrons subject to a static, inhomogeneous (1/r-decaying) magnetic field, including the Zeeman interaction. The solution provides access to many-body properties of a two-dimensional, non-interacting, electron gas in the thermodynamic limit. Radially distorted Landau levels can be identified as well as magnetic field induced density and current oscillations close to the magnetic impurity. These radially localised oscillations depend strongly on the coupling of the spin to the magnetic field, which give rise to non-trivial spin currents. Moreover, the Zeeman interaction introduces a lowest flat band for E
Show Abstract

Tunable stripe order and weak superconductivity in the Moiré Hubbard model

A. Wietek, J. Wang, J. Zang, J. Cano, A. Georges, A. Millis
The moiré Hubbard model describes correlations in certain homobilayer twisted transition metal dichalcogenides. Using exact diagonalization and density matrix renormalization group methods, we find magnetic Mott insulating and metallic phases, which, upon doping exhibit intertwined charge and spin ordering and, in some regimes, pair binding of holes. The phases are highly tunable via an interlayer potential difference. Remarkably, the hole binding energy is found to be highly tunable revealing an experimentally accessible regime where holes become attractive. In this attractive regime, we study the superconducting correlation function and point out the possibility of weak superconductivity.
Show Abstract

Fragmented Cooper Pair Condensation in Striped Superconductors

Condensation of bosons in Bose-Einstein condensates or Cooper pairs in superconductors refers to a macroscopic occupation of a few single- or two-particle states. A condensate is called "fragmented" if not a single, but multiple states are macroscopically occupied. While fragmentation is known to occur in particular Bose-Einstein condensates, we propose that fragmentation naturally takes place in striped superconductors. To this end, we investigate the nature of the superconducting ground state realized in the two-dimensional t-t-J model. In the presence of charge density modulations, the condensate is shown to be fragmented and composed of partial condensates located on the stripes. The fragments of the condensates hybridize to form an extended macroscopic wave function across the system. The results are obtained from evaluating the singlet-pairing two-particle density matrix of the ground state on finite cylinders computed via the density matrix renormalization group (DMRG) method. Our results shed light on the intricate relation between stripe order and superconductivity in systems of strongly correlated electrons.
Show Abstract
October 1, 2022

A high-order fast direct solver for surface PDEs

We introduce a fast direct solver for variable-coefficient elliptic partial differential equations on surfaces based on the hierarchical Poincaré-Steklov method. The method takes as input an unstructured, high-order quadrilateral mesh of a surface and discretizes surface differential operators on each element using a high-order spectral collocation scheme. Elemental solution operators and Dirichlet-to-Neumann maps tangent to the surface are precomputed and merged in a pairwise fashion to yield a hierarchy of solution operators that may be applied in O(N N) operations for a mesh with N elements. The resulting fast direct solver may be used to accelerate high-order implicit time-stepping schemes, as the precomputed operators can be reused for fast elliptic solves on surfaces. On a standard laptop, precomputation for a 12th-order surface mesh with over 1 million degrees of freedom takes 17 seconds, while subsequent solves take only 0.25 seconds. We apply the method to a range of problems on both smooth surfaces and surfaces with sharp corners and edges, including the static Laplace-Beltrami problem, the Hodge decomposition of a tangential vector field, and some time-dependent nonlinear reaction-diffusion systems.

Show Abstract
September 30, 2022

Deep Learning the Functional Renormalization Group

Domenico Di Sante, Matija Medvidović, Alessandro Toschi, Giorgio Sangiovanni, Cesare Franchini, A. Sengupta, Andrew J. Millis

We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional \(t−t′\) Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.

Show Abstract

Can we detect deep axisymmetric toroidal magnetic fields in stars?

Hachem Dhouib, Stéphane Mathis, L. Bugnet, Timothy Van Reeth, Conny Aerts

One of the major discoveries of asteroseismology is the signature of a strong extraction of angular momentum (AM) in the radiative zones of stars across the entire Hertzsprung-Russell diagram, resulting in weak core-to-surface rotation contrasts. Despite all efforts, a consistent AM transport theory, which reproduces both the internal rotation and mixing probed thanks to the seismology of stars, remains one of the major open problems in modern stellar astrophysics. A possible key ingredient to figure out this puzzle is magnetic field with its various possible topologies. Among them, strong axisymmetric toroidal fields, which are subject to the so-called Tayler MHD instability, could play a major role. They could trigger a dynamo action in radiative layers while the resulting magnetic torque allows an efficient transport of AM. But is it possible to detect signatures of these deep toroidal magnetic fields? The only way to answer this question is asteroseismology and the best laboratories of study are intermediate-mass and massive stars because of their external radiative envelope. Since most of these are rapid rotators during their main-sequence, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones. For that, we generalise the traditional approximation of rotation, which provides in its classic version a flexible treatment of the adiabatic propagation of gravito-inertial modes, by taking simultaneously general axisymmetric differential rotation and toroidal magnetic fields into account. Using this new non-perturbative formalism, we derive the asymptotic properties of magneto-gravito-inertial modes and we explore the different possible field configurations. We found that the magnetic effects should be detectable for equatorial fields using high-precision asteroseismic data.

Show Abstract

Accurate de novo design of membrane-traversing macrocycles

G. Bhardwaj, G. Bhardwaj, J. O’Connor, V. Mulligan, et al.

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10−6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutic

Show Abstract
September 15, 2022
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates