2573 Publications

Time- and angle-resolved photoelectron spectroscopy of strong-field light-dressed solids: Prevalence of the adiabatic band picture

Ofer Neufeld, Wenwen Mao, Hannes Hübener, Nicolas Tancogne-Dejean, Shunsuke A. Sato, Umberto De Giovannini, A. Rubio
In recent years, strong-field physics in condensed-matter was pioneered as a novel approach for controlling material properties through laser-dressing, as well as for ultrafast spectroscopy via nonlinear light-matter interactions (e.g. harmonic generation). A potential controversy arising from these advancements is that it is sometimes vague which band-picture should be used to interpret strong-field experiments: the field-free bands, the adiabatic (instantaneous) field-dressed bands, Floquet bands, or some other intermediate picture. We here try to resolve this issue by performing 'theoretical experiments' of time- and angle-resolved photoelectron spectroscopy (Tr-ARPES) for a strong-field laser-pumped solid, which should give access to the actual observable bands of the irradiated material. To our surprise, we find that the adiabatic band-picture survives quite well, up to high field intensities ( 10
Show Abstract

Optical conductivity of the two-dimensional Hubbard model: Vertex corrections, emergent Galilean invariance, and the accuracy of the single-site dynamical mean field approximation

Anqi Mu, Zhiyuan Sun, Andrew J. Millis
We compute the frequency dependent conductivity of the two dimensional square lattice Hubbard model at zero temperature as a function of density to second order in the interaction strength, and compare the results to the predictions of single-site dynamical mean field theory computed at the same order. We find that despite the neglect of vertex corrections, the single site dynamical mean field approximation produces semiquantitatively accurate results for most carrier concentrations, but fails qualitatively for the nearly empty or nearly filled band cases where the theory exhibits an emergent Galilean invariance. The theory also becomes qualitatively inaccurate very near half filling if nesting is important.
Show Abstract
August 1, 2022

Frame invariance and scalability of neural operators for partial differential equations

Muhammad I. Zafar, J. Han, Xu-Hui Zhou, Heng Xiao

Partial differential equations (PDEs) play a dominant role in the mathematical modeling of many complex dynamical processes. Solving these PDEs often requires prohibitively high computational costs, especially when multiple evaluations must be made for different parameters or conditions. After training, neural operators can provide PDEs solutions significantly faster than traditional PDE solvers. In this work, invariance properties and computational complexity of two neural operators are examined for transport PDE of a scalar quantity. Neural operator based on graph kernel network (GKN) operates on graph-structured data to incorporate nonlocal dependencies. Here we propose a modified formulation of GKN to achieve frame invariance. Vector cloud neural network (VCNN) is an alternate neural operator with embedded frame invariance which operates on point cloud data. GKN-based neural operator demonstrates slightly better predictive performance compared to VCNN. However, GKN requires an excessively high computational cost that increases quadratically with the increasing number of discretized objects as compared to a linear increase for VCNN.

Show Abstract

A high-order integral equation-based solver for the time-dependent Schrödinger equation

We introduce a numerical method for the solution of the time-dependent Schrödinger equation with a smooth potential, based on its reformulation as a Volterra integral equation. We present versions of the method both for periodic boundary conditions, and for free space problems with compactly supported initial data and potential. A spatially uniform electric field may be included, making the solver applicable to simulations of light-matter interaction. The primary computational challenge in using the Volterra formulation is the application of a spacetime history dependent integral operator. This may be accomplished by projecting the solution onto a set of Fourier modes, and updating their coefficients from one time step to the next by a simple recurrence. In the periodic case, the modes are those of the usual Fourier series, and the fast Fourier transform (FFT) is used to alternate between physical and frequency domain grids. In the free space case, the oscillatory behavior of the spectral Green's function leads us to use a set of complex-frequency Fourier modes obtained by discretizing a contour deformation of the inverse Fourier transform, and we develop a corresponding fast transform based on the FFT. Our approach is related to pseudospectral methods, but applied to an integral rather than the usual differential formulation. This has several advantages: it avoids the need for artificial boundary conditions, admits simple, inexpensive, high-order implicit time marching schemes, and naturally includes time-dependent potentials. We present examples in one and two dimensions showing spectral accuracy in space and eighth-order accuracy in time for both periodic and free space problems.

Show Abstract

On the stability of tidal streams in action space

A. Arora, R. Sanderson, N. Panithanpaisal, A. Wetzel, N. Garavito-Camargo, E. Cunningham

In the Gaia era it is increasingly apparent that traditional static, parameterized models are insufficient to describe the mass distribution of our complex, dynamically evolving Milky Way (MW). In this work, we compare different time-evolving and time-independent representations of the gravitational potentials of simulated MW-mass galaxies from the FIRE-2 suite of cosmological baryonic simulations. Using these potentials, we calculate actions for star particles in tidal streams around three galaxies with varying merger histories at each snapshot from 7 Gyr ago to the present day. We determine the action-space coherence preserved by each model using the Kullback-Leibler Divergence to gauge the degree of clustering in actions and the relative stability of the clusters over time. We find that all models produce a clustered action space for simulations with no significant mergers. However, a massive (mass ratio prior to infall more similar than 1:8) interacting galaxy not present in the model will result in mischaracterized orbits for stars most affected by the interaction. The locations of the action space clusters (i.e. the orbits of the stream stars) are only preserved by the time-evolving model, while the time-independent models can lose significant amounts of information as soon as 0.5--1 Gyr ago, even if the system does not undergo a significant merger. Our results imply that reverse-integration of stream orbits in the MW using a fixed potential is likely to give incorrect results if integrated longer than 0.5 Gyr into the past.

Show Abstract
July 27, 2022

Nanoscale Femtosecond Dynamics of Mott Insulator (Ca0.99Sr0.01)2RuO4

Rocco A. Vitalone, Aaron J. Sternbach, Benjamin A. Foutty, Alexander S. McLeod, Chanchal Sow, D. Golez, Fumihiko Nakamura, Yoshiteru Maeno, Abhay N. Pasupathy, A. Georges, Andrew J. Millis, D. N. Basov
Ca2RuO4 is a transition-metal oxide that exhibits a Mott insulator-metal transition (IMT) concurrent with a symmetry-preserving Jahn-Teller distortion (JT) at 350 K. The coincidence of these two transitions demonstrates a high level of coupling between the electronic and structural degrees of freedom in Ca2RuO4. Using spectroscopic measurements with nanoscale spatial resolution, we interrogate the interplay of the JT and IMT through the temperature-driven transition. Then, we introduce photoexcitation with subpicosecond temporal resolution to explore the coupling of the JT and IMT via electron-hole injection under ambient conditions. Through the temperature-driven IMT, we observe phase coexistence in the form of a stripe phase existing at the domain wall between macroscopic insulating and metallic domains. Through ultrafast carrier injection, we observe the formation of midgap states via enhanced optical absorption. We propose that these midgap states become trapped by lattice polarons originating from the local perturbation of the JT.
Show Abstract
Nano Letters
July 27, 2022
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.