Christopher Derek Hacon, Ph.D.

University of Utah

Christopher Hacon’s works are among the most important contributions to higher-dimensional algebraic geometry since Mori’s in the 1980s. Hacon and his co-authors have solved major problems concerning the birational geometry of algebraic varieties, including the characterization of irregular varieties, boundedness theorems for pluricanonical maps, a proof of the existence of flips, the completion of the minimal model program for varieties of general type, and bounds for the order of automorphism groups of varieties of general type. His work has also led to solutions of other problems, such as the existence of moduli spaces for varieties of general type and the ascending chain condition for log canonical thresholds.

Subscribe to MPS announcements and other foundation updates