Becca Thomases Seminar

Date


Title: Microorganism locomotion in viscoelastic fluids

Abstract: Many microorganisms and cells function in complex (non-Newtonian) fluids, which are mixtures of different materials and exhibit both viscous and elastic stresses. For example, mammalian sperm swim through cervical mucus on their journey through the female reproductive tract, and they must penetrate the viscoelastic gel outside the ovum to fertilize. In micro-scale swimming the dynamics emerge from the coupled interactions between the complex rheology of the surrounding media and the passive and active body dynamics of the swimmer. We use computational models of swimmers in viscoelastic fluids to investigate and provide mechanistic explanations for emergent swimming behaviors.
I will discuss how flexible filaments (such as flagella) can store energy from a viscoelastic fluid to gain stroke boosts from fluid elasticity. I will also describe a 3D simulation of the model organism C. Reinhardtii that we use to separate naturally coupled stroke and fluid effects and explore why strokes that are adapted to Newtonian fluid environments might not do well in viscoelastic environments.

Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.