565 Publications

Computational tools for cellular scale biophysics Author links open overlay panel

Mathematical models are indispensable for disentangling the interactions through which biological components work together to generate the forces and flows that position, mix, and distribute proteins, nutrients, and organelles within the cell. To illuminate the ever more specific questions studied at the edge of biological inquiry, such models inevitably become more complex. Solving, simulating, and learning from these more realistic models requires the development of new analytic techniques, numerical methods, and scalable software. In this review, we discuss some recent developments in tools for understanding how large numbers of cytoskeletal filaments, driven by molecular motors and interacting with the cytoplasm and other structures in their environment, generate fluid flows, instabilities, and material deformations which help drive crucial cellular processes.

Show Abstract

Minimal motifs for habituating systems

M. Smart, S. Shvartsman, Martin Mönnigmann

Habituation – a phenomenon in which a dynamical system exhibits a diminishing response to repeated stimulations that eventually recovers when the stimulus is withheld – is universally observed in living systems from animals to unicellular organisms. Despite its prevalence, generic mechanisms for this fundamental form of learning remain poorly defined. Drawing inspiration from prior work on systems that respond adaptively to step inputs, we study habituation from a nonlinear dynamics perspective. This approach enables us to formalize classical hallmarks of habituation that have been experimentally identified in diverse organisms and stimulus scenarios. We use this framework to investigate distinct dynamical circuits capable of habituation. In particular, we show that driven linear dynamics of a memory variable with static nonlinearities acting at the input and output can implement numerous hallmarks in a mathematically interpretable manner. This work establishes a foundation for understanding the dynamical substrates of this primitive learning behavior and offers a blueprint for the identification of habituating circuits in biological systems.

Show Abstract

E. coli do not count single molecules

H. Mattingly, Keita Kamino, Jude Ong, et al.

Organisms must perform sensory-motor behaviors to survive. What bounds or constraints limit behavioral performance? Previously, we found that the gradient-climbing speed of a chemotaxing Escherichia coli is near a bound set by the limited information they acquire from their chemical environments (1). Here we ask what limits their sensory accuracy. Past theoretical analyses have shown that the stochasticity of single molecule arrivals sets a fundamental limit on the precision of chemical sensing (2). Although it has been argued that bacteria approach this limit, direct evidence is lacking. Here, using information theory and quantitative experiments, we find that E. coli’s chemosensing is not limited by the physics of particle counting. First, we derive the physical limit on the behaviorally-relevant information that any sensor can get about a changing chemical concentration, assuming that every molecule arriving at the sensor is recorded. Then, we derive and measure how much information E. coli’s signaling pathway encodes during chemotaxis. We find that E. coli encode two orders of magnitude less information than an ideal sensor limited only by shot noise in particle arrivals. These results strongly suggest that constraints other than particle arrival noise limit E. coli’s sensory fidelity.

Show Abstract

Yardangs sculpted by erosion of heterogeneous material

Samuel Boury, S. Weady, Leif Ristroph, et. al.

The recognizable shapes of landforms arise from processes such as erosion by wind or water currents. However, explaining the physical origin of natural structures is challenging due to the coupled evolution of complex flow fields and three-dimensional (3D) topographies. We investigate these issues in a laboratory setting inspired by yardangs, which are raised, elongate formations whose characteristic shape suggests erosion of heterogeneous material by directional flows. We combine experiments and simulations to test an origin hypothesis involving a harder or less erodible inclusion embedded in an outcropping of softer material. Optical scans of clay objects fixed within flowing water reveal a transformation from a featureless mound to a yardang-like form resembling a lion in repose. Phase-field simulations reproduce similar shape dynamics and show their dependence on the erodibility contrast and flow strength. Through visualizations of the flow fields and analysis of the local erosion rate, we identify effects associated with flow funneling and the turbulent wake that are responsible for carving the unique geometrical features. This highly 3D scouring process produces complex shapes from simple and commonplace starting conditions and is thus a candidate explanation for natural yardangs. The methods introduced here should be generally useful for geomorphological problems and especially those for which material heterogeneity is a primary factor.

Show Abstract

DIPG-15. NOVEL CNS SENSING SYNNOTCH-CAR T CELLS FOR TARGETING DIFFUSE MIDLINE GLIOMA

Senthilnath Lakshmanachetty, Milos Simic, O. Troyanskaya, et al.

Diffuse midline glioma (DMG), including Diffuse intrinsic pontine glioma (DIPG), is an aggressive brain tumor in children with limited treatment options. Recent developments of phase 1 clinical trials have shown early promise for chimeric antigen receptor (CAR) T cells in patients with DMG/DIPG. However, several barriers such as the absence of tumor-specific antigens, restricted trafficking to the tumor site, and poor persistence hinder the full therapeutic potential of CAR T cell therapy in DMG/DIPG.

Show Abstract

Martini without the twist: Unveiling a mechanically correct microtubule through bottom-up coarse-graining in Martini 3

Microtubules are essential cytoskeletal filaments involved in cell motility, division, and intracellular transport. These biomolecular assemblies can exhibit complex structural be-haviors influenced by various biophysical factors. However, simulating microtubule systems at the atomistic scale is challenging due to their large spatial scales. Here, we present an approach utilizing the Martini 3 Coarse-Grained (CG) model coupled with an appropriate elastic network to simulate microtubule-based systems accurately. By iteratively optimiz-ing the elastic network parameters, we matched the structural fluctuations of CG hetero-dimer building blocks to their atomistic counterparts. Our efforts culminated in a ∼ 200nm microtubule built with ∼ 6 million interaction-centers that could reproduce experimentally observed mechanical properties. Our aim is to employ these CG simulations to investigate specific biophysical phenomena at a microscopic level. These microscopic perspectives can provide valuable insights into the underlying mechanisms and contribute to our knowledge of microtubule-associated processes in cellular biology. With MARTINI 3 CG simulations, we can bridge the gap between computational efficiency and molecular detail, enabling in-vestigations into these biophysical processes over longer spatio-temporal scales with amino acid-level insights.

Show Abstract
June 1, 2024

MousiPLIER: A Mouse Pathway-Level Information Extractor Model

Shuo Zhang , Benjamin J. Heil, W. Mao , et al.

High throughput gene expression profiling measures individual gene expression across conditions. However, genes are regulated in complex networks, not as individual entities, limiting the interpretability of gene expression data. Machine learning models that incorporate prior biological knowledge are a powerful tool to extract meaningful biology from gene expression data. Pathway-level information extractor (PLIER) is an unsupervised machine learning method that defines biological pathways by leveraging the vast amount of published transcriptomic data. PLIER converts gene expression data into known pathway gene sets, termed latent variables (LVs), to substantially reduce data dimensionality and improve interpretability. In the current study, we trained the first mouse PLIER model on 190,111 mouse brain RNA-sequencing samples, the greatest amount of training data ever used by PLIER. We then validated the mousiPLIER approach in a study of microglia and astrocyte gene expression across mouse brain aging. mousiPLIER identified biological pathways that are significantly associated with aging, including one latent variable (LV41) corresponding to striatal signal. To gain further insight into the genes contained in LV41, we performed k-means clustering on the training data to identify studies that respond strongly to LV41. We found that the variable was relevant to striatum and aging across the scientific literature. Finally, we built a web server (http://mousiplier.greenelab.com/) for users to easily explore the learned latent variables. Taken together this study defines mousiPLIER as a method to uncover meaningful biological processes in mouse brain transcriptomic studies.

Show Abstract
May 24, 2024

Mechanics and morphology of proliferating cell collectives with self-inhibiting growth

S. Weady, Bryce Palmer, A. Lamson, Taeyoon Kim, R. Farhadifar, M. Shelley

We study the dynamics of proliferating cell collectives whose microscopic constituents' growth is inhibited by macroscopic growth-induced stress. Discrete particle simulations of a growing collective show the emergence of concentric-ring patterns in cell size whose spatio-temporal structure is closely tied to the individual cell's stress response. Motivated by these observations, we derive a multiscale continuum theory whose parameters map directly to the discrete model. Analytical solutions of this theory show the concentric patterns arise from anisotropically accumulated resistance to growth over many cell cycles. This work shows how purely mechanical processes can affect the internal patterning and morphology of cell collectives, and provides a concise theoretical framework for connecting the micro- to macroscopic dynamics of proliferating matter.

Show Abstract
May 16, 2024

Temperature compensation through kinetic regulation in biochemical oscillators

Yuhai Tu, et al.

Nearly all circadian clocks maintain a period that is insensitive to temperature changes, a phenomenon known as temperature compensation (TC). Yet, it is unclear whether there is any common feature among different systems that exhibit TC. From a general timescale invariance, we show that TC relies on the existence of certain period-lengthening reactions wherein the period of the system increases strongly with the rates in these reactions. By studying several generic oscillator models, we show that this counterintuitive dependence is nonetheless a common feature of oscillators in the nonlinear (far-from-onset) regime where the oscillation can be separated into fast and slow phases. The increase of the period with the period-lengthening reaction rates occurs when the amplitude of the slow phase in the oscillation increases with these rates while the progression speed in the slow phase is controlled by other rates of the system. The positive dependence of the period on the period-lengthening rates balances its inverse dependence on other kinetic rates in the system, which gives rise to robust TC in a wide range of parameters. We demonstrate the existence of such period-lengthening reactions and their relevance for TC in all four model systems we considered. Theoretical results for a model of the Kai system are supported by experimental data. A study of the energy dissipation also shows that better TC performance requires higher energy consumption. Our study unveils a general mechanism by which a biochemical oscillator achieves TC by operating in parameter regimes far from the onset where period-lengthening reactions exist.

Show Abstract

A minimal dynamical system and analog circuit for non-associative learning

M. Smart, S. Shvartsman, Martin Mönnigmann

Learning in living organisms is typically associated with networks of neurons. The use of large numbers of adjustable units has also been a crucial factor in the continued success of artificial neural networks. In light of the complexity of both living and artificial neural networks, it is surprising to see that very simple organisms -- even unicellular organisms that do not possess a nervous system -- are capable of certain forms of learning. Since in these cases learning may be implemented with much simpler structures than neural networks, it is natural to ask how simple the building blocks required for basic forms of learning may be. The purpose of this study is to discuss the simplest dynamical systems that model a fundamental form of non-associative learning, habituation, and to elucidate technical implementations of such systems, which may be used to implement non-associative learning in neuromorphic computing and related applications.

Show Abstract
May 9, 2024
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates