645 Publications

Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak–Keller–Segel chemotaxis model

Trung V. Phan, H. Mattingly, et al.

Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak–Keller–Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.

Show Abstract
January 9, 2024

Non-genetic adaptation by collective migration

Lam Vo, H. Mattingly, et al.

Collective behaviors require coordination of individuals. Thus, a population must adjust its phenotypic distribution to adapt to changing environments. How can a population regulate its phenotypic distribution? One strategy is to utilize specialized networks for gene regulation and maintaining distinct phenotypic subsets. Another involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse across diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. Surprisingly, we found that during collective migration, the distributions of swimming phenotypes adapt to the environment without mutations or gene regulation. Instead, adaptation is caused by the dynamic and reversible enrichment of high-performing swimming phenotypes within each environment. This adaptation mechanism is supported by a recent theoretical study, which proposed that the phenotypic composition of a migrating population results from a balance between cell growth generating diversity and collective migration eliminating the phenotypes that are unable to keep up with the migrating group. Furthermore, by examining chemoreceptor abundance distributions during migration towards different attractants, we found that this mechanism acts on multiple chemotaxis-related traits simultaneously. Our findings reveal that collective migration itself can enable cell populations with continuous, multi-dimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions.

Show Abstract
January 3, 2024

Hydrodynamics of a multicomponent vesicle under strong confinement

Ashley Gannon, Bryan Quaife, Y.-N. Young

We numerically investigate the hydrodynamics and membrane dynamics of a multicomponent vesicle in two strongly confined geometries. This serves as a simplified model for red blood cells undergoing large deformations while traversing narrow constrictions. We propose a new parameterization for the bending modulus that remains positive for all lipid phase parameter values. For a multicomponent vesicle passing through a stenosis, we establish connections between various properties: lipid phase coarsening, size and flow profile of the lubrication layers, excess pressure, and the tank-treading velocity of the membrane. For a multicomponent vesicle passing through a contracting channel, we find that the lipid always phase separates so that the vesicle is stiffer in the front as it passes through the constriction. For both cases of confinement we find that lipid coarsening is arrested under strong confinement, and resumes at a high rate upon relief from extreme confinement. The results may be useful for efficient sorting lipid domains using microfluidic flows by controlled release of vesicles passing through strong confinement.

Show Abstract

Adaptive micro-locomotion in a dynamically changing environment via context detection

Zonghao Zou , Yuexin Liu , Y.-N. Young

Substantial efforts have exploited reinforcement learning (RL) in the development of micro-robotic locomotion. These RL-powered micro-robots are capable of learning a locomotory policy based on their experience interacting with the surroundings, without requiring prior knowledge on the physics of locomotion in that environment. However, in their applications, micro-robots often encounter changes in the environment and need to adapt their locomotory gaits like living organisms in order to achieve robust locomotion performance. In standard RL methods, such a non-stationary environment can cause the micro-robots to continuously relearn the policy from scratch, degrading their locomotion performance. In this work, we explore a first use of a recently developed context detection method combined with deep RL to facilitate micro-robotic locomotion in a dynamically changing environment. As a proof-of-principle, we consider a simple micro-robot immersed in non-stationary environments switching between a viscous fluid environment and a dry frictional environment. We show that the RL with context detection approach enables the micro-robot to effectively detect changes in the environment and deploy specialized locomotory gaits for different environments accordingly to achieve significantly improved locomotion. Our results suggest the integration of deep RL with context detection as a potential tool for robust micro-robotic locomotion across different environments.

Show Abstract

A high-order fast direct solver for surface PDEs

We introduce a fast direct solver for variable-coefficient elliptic PDEs on surfaces based on the hierarchical Poincaré–Steklov method. The method takes as input an unstructured, high-order quadrilateral mesh of a surface and discretizes surface differential operators on each element using a high-order spectral collocation scheme. Elemental solution operators and Dirichlet-to-Neumann maps tangent to the surface are precomputed and merged in a pairwise fashion to yield a hierarchy of solution operators that may be applied in \(\mathcal{O}(N \log N)\) operations for a mesh with \(N\) degrees of freedom. The resulting fast direct solver may be used to accelerate high-order implicit time-stepping schemes, as the precomputed operators can be reused for fast elliptic solves on surfaces. On a standard laptop, precomputation for a 12th-order surface mesh with over 1 million degrees of freedom takes 10 seconds, while subsequent solves take only 0.25 seconds. We apply the method to a range of problems on both smooth surfaces and surfaces with sharp corners and edges, including the static Laplace–Beltrami problem, the Hodge decomposition of a tangential vector field, and some time-dependent nonlinear reaction-diffusion systems. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: code and data available”, as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/danfortunato/surface-hps-sisc.

Show Abstract

Laser ablation and fluid flows reveal the mechanism behind spindle and centrosome positioning

Few techniques are available for studying the nature of forces that drive subcellular dynamics. Here we develop two complementary ones. The first is femtosecond stereotactic laser ablation, which rapidly creates complex cuts of subcellular structures and enables precise dissection of when, where and in what direction forces are generated. The second is an assessment of subcellular fluid flows by comparison of direct flow measurements using microinjected fluorescent nanodiamonds with large-scale fluid-structure simulations of different force transduction models. We apply these techniques to study spindle and centrosome positioning in early Caenorhabditis elegans embryos and to probe the contributions of microtubule pushing, cytoplasmic pulling and cortical pulling upon centrosomal microtubules. Based on our results, we construct a biophysical model to explain the dynamics of centrosomes. We demonstrate that cortical pulling forces provide a general explanation for many behaviours mediated by centrosomes, including pronuclear migration and centration, rotation, metaphase spindle positioning, asymmetric spindle elongation and spindle oscillations. This work establishes methodologies for disentangling the forces responsible for cell biological phenomena.

Show Abstract

Influence of surface viscosities on the electrodeformation of a prolate viscous drop

H. Nganguia, Y.-N. Young, et al.

Contaminants and other agents are often present at the interface between two fluids, giving rise to rheological properties such as surface shear and dilatational viscosities. The dynamics of viscous drops with interfacial viscosities has attracted greater interest in recent years, due to the influence of surface rheology on deformation and the surrounding flows. We investigate the effects of shear and dilatational viscosities on the electro-deformation of a viscous drop using the Taylor–Melcher leaky dielectric model. We use a large deformation analysis to derive an ordinary differential equation for the drop shape. Our model elucidates the contributions of each force to the overall deformation of the drop and reveals a rich range of dynamic behaviors that show the effects of surface viscosities and their dependence on rheological and electrical properties of the system. We also examine the physical mechanisms underlying the observed behaviors by analyzing the surface dilatation and surface deformation.

Show Abstract
December 23, 2023

Prebifurcation enhancement of imbibition-drainage hysteresis cycles

I. Lavi, et al.

The efficient transport of fluids through disordered media requires a thorough understanding of how the driving rate affects two-phase interface propagation. Despite our understanding of front dynamics in homogeneous environments, as well as how medium heterogeneities shape fluid interfaces at rest, little is known about the effects of localized topographical variations on large-scale interface dynamics. To gain physical insights into this problem, we study here oil-air displacements through an “imperfect” Hele-Shaw cell. Combining experiments, numerical simulations, and theory, we show that the flow rate dramatically alters the interface response to a porous constriction as one approaches the Saffman-Taylor instability, strictly under stable conditions. This gives rise to asymmetric imbibition–drainage hysteresis cycles that feature divergent extensions and nonlocal effects, all of which are aptly captured and explained by a minimal free boundary model.

Show Abstract

Interpretable neural architecture search and transfer learning for understanding CRISPR–Cas9 off-target enzymatic reactions

Z. Zhang, A. Lamson, M. Shelley, O. Troyanskaya

Finely-tuned enzymatic pathways control cellular processes, and their dysregulation can lead to disease. Creating predictive and interpretable models for these pathways is challenging because of the complexity of the pathways and of the cellular and genomic contexts. Here we introduce Elektrum, a deep learning framework which addresses these challenges with data-driven and biophysically interpretable models for determining the kinetics of biochemical systems. First, it uses in vitro kinetic assays to rapidly hypothesize an ensemble of high-quality Kinetically Interpretable Neural Networks (KINNs) that predict reaction rates. It then employs a novel transfer learning step, where the KINNs are inserted as intermediary layers into deeper convolutional neural networks, fine-tuning the predictions for reaction-dependent in vivo outcomes. Elektrum makes effective use of the limited, but clean in vitro data and the complex, yet plentiful in vivo data that captures cellular context. We apply Elektrum to predict CRISPR-Cas9 off-target editing probabilities and demonstrate that Elektrum achieves state-of-the-art performance, regularizes neural network architectures, and maintains physical interpretability

Show Abstract

Analysis of the human kidney transcriptome and plasma proteome identifies markers of proximal tubule maladaptation to injury

Yumen Men, Emily Su, W. Mao , et al.

Acute kidney injury (AKI) is a major risk factor for long-term adverse outcomes, including chronic kidney disease. In mouse models of AKI, maladaptive repair of the injured proximal tubule (PT) prevents complete tissue recovery. However, evidence for PT maladaptation and its etiological relationship with complications of AKI is lacking in humans. We performed single-nucleus RNA sequencing of 120,985 nuclei in kidneys from 17 participants with AKI and seven healthy controls from the Kidney Precision Medicine Project. Maladaptive PT cells, which exhibited transcriptomic features of dedifferentiation and enrichment in pro-inflammatory and profibrotic pathways, were present in participants with AKI of diverse etiologies. To develop plasma markers of PT maladaptation, we analyzed the plasma proteome in two independent cohorts of patients undergoing cardiac surgery and a cohort of marathon runners, linked it to the transcriptomic signatures associated with maladaptive PT, and identified nine proteins whose genes were specifically up- or down-regulated by maladaptive PT. After cardiac surgery, both cohorts of patients had increased transforming growth factor–β2 (TGFB2), collagen type XXIII-α1 (COL23A1), and X-linked neuroligin 4 (NLGN4X) and had decreased plasminogen (PLG), ectonucleotide pyrophosphatase/phosphodiesterase 6 (ENPP6), and protein C (PROC). Similar changes were observed in marathon runners with exercise-associated kidney injury. Postoperative changes in these markers were associated with AKI progression in adults after cardiac surgery and post-AKI kidney atrophy in mouse models of ischemia-reperfusion injury and toxic injury. Our results demonstrate the feasibility of a multiomics approach to discovering noninvasive markers and associating PT maladaptation with adverse clinical outcomes.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.