661 Publications

Multiscale simulations of molecular recognition by phase separated MUT-16: A scaffolding protein of Mutator foci

Kumar Gaurav, Virginia Busetto, S. Hanson

Biomolecular recruitment by phase separated condensates has emerged as a key organising principle of biological processes. One such process is the RNA silencing pathway, which regulates gene expression and genomic defense against foreign nucleic acids. In C. elegans, this pathway involves siRNA amplification at perinuclear germ granules named Mutator foci. The formation of Mutator foci depends on the phase separation of MUT-16, acting as a scaffolding protein to recruit other components of the Mutator complex. Earlier studies have indicated a crucial role for an exoribonuclease, MUT-7, in RNA silencing. The recruitment of MUT-7 to Mutator foci is facilitated by a bridging protein, MUT-8. However, how MUT-8 binds to MUT-16 remains elusive. We resolved the molecular drivers of MUT-16 phase separation and the recruitment of MUT-8 using multi-scale molecular dynamics simulations and in vitro experiments. Residue-level coarse-grained simulations predicted the relative phase separation propensities of MUT-16 disordered regions, which we validated by experiments.

Coarse-grained simulations at residue-level and near atomic-resolution also indicated the essential role of aromatic amino acids (Tyr and Phe) in MUT-16 phase separation. Furthermore, coarse-grained and atomistic simulations of MUT-8 N-terminal prion-like domain with phase separated MUT-16 condensate revealed the importance of cation-π interaction between Tyr residues of MUT-8 and Arg/Lys residues of MUT-16. By re-introducing atomistic detail to condensates from coarse-grained and 350 µs all-atom simulations in explicit solvent on Folding@Home, we demonstrate Arg-Tyr interaction surpasses the strength of Lys-Tyr interactions in the recruitment of MUT-8. The atomistic simulations show that the planar guanidinium group of Arg also engages in sp2-π interaction, and hydrogen bonds with the Tyr residues and these additional favorable contacts are missing in the Lys-Tyr interactions. In agreement with simulations, the mutation of seven Arg residues in MUT-16 to Lys and Ala weakens MUT-8 binding in vitro.

Show Abstract
April 15, 2024

Design of Coiled-Coil Protein Nanostructures for Therapeutics and Drug Delivery

D. Renfrew, et al.

Coiled-coil protein motifs have become widely employed in the design of biomaterials. Some of these designs have been studied for use in drug delivery due to the unique ability of coiled-coils to impart stability, oligomerization, and supramolecular assembly. To leverage these properties and improve drug delivery, release, and targeting, a variety of nano- to mesoscale architectures have been adopted. Coiled-coil drug delivery and therapeutics have been developed by using the coiled-coil alone, designing for higher-order assemblies such as fibers and hydrogels, and combining coiled-coil proteins with other biocompatible structures such as lipids and polymers. We review the recent development of these structures and the design criteria used to generate functional proteins of varying sizes and morphologies.

Show Abstract

Deep Learning Sequence Models for Transcriptional Regulation

Deciphering the regulatory code of gene expression and interpreting the transcriptional effects of genome variation are critical challenges in human genetics. Modern experimental technologies have resulted in an abundance of data, enabling the development of sequence-based deep learning models that link patterns embedded in DNA to the biochemical and regulatory properties contributing to transcriptional regulation, including modeling epigenetic marks, 3D genome organization, and gene expression, with tissue and cell-type specificity. Such methods can predict the functional consequences of any noncoding variant in the human genome, even rare or never-before-observed variants, and systematically characterize their consequences beyond what is tractable from experiments or quantitative genetics studies alone. Recently, the development and application of interpretability approaches have led to the identification of key sequence patterns contributing to the predicted tasks, providing insights into the underlying biological mechanisms learned and revealing opportunities for improvement in future models.

Show Abstract

Promoter and Gene-Body RNA-Polymerase II co-exist in partial demixed condensates

Arya Changiarath , Jasper J. Michels, S. Hanson

In cells, transcription is tightly regulated on multiple layers. The condensation of the transcription machinery into distinct phases is hypothesized to spatio-temporally fine tune RNA polymerase II behaviour during two key stages, transcription initiation and the elongation of the nascent RNA transcripts. However, it has remained unclear whether these phases would mix when present at the same time or remain distinct chemical environments; either as multi-phase condensates or by forming entirely separate condensates. Here we combine particle-based multi-scale simulations and experiments in the model organism C. elegans to characterise the biophysical properties of RNA polymerase II condensates. Both simulations and the in vivo work describe a lower critical solution temperature (LCST) behaviour of RNA Polymerase II, with condensates dissolving at lower temperatures whereas higher temperatures promote condensate stability, which highlights that these condensates are physio-chemically distinct from heterochromatin condensates. The LCST behavior of CTD correlates with gradual shifts in the transcription program but is largely uncoupled from the classical stress response. Expanding the simulations we model how the degree of phosphorylation of the disordered C-terminal domain of RNA polymerase II (CTD), which is characteristic for each step of transcription, controls the existence and morphology of multi-phasic condensates. We show that the two phases putatively underpinning the initiation of transcription and transcription elongation constitute distinct chemical environments and are in agreement with RNA polymerase II condensates observed in C. elegans embryos by super resolution microscopy. Our analysis shows how depending on its post transcriptional modifications and its interaction partner a single protein can form multiple partially engulfed condensates, potentially promoting the selective recruitment of additional factors to these two phases.

Show Abstract
March 27, 2024

Supercharged coiled-coil protein with N-terminal decahistidine tag boosts siRNA complexation and delivery efficiency of a lipoproteoplex

Jonathan W. Sun, Joseph S. Thomas, D. Renfrew, et al.

Short interfering RNA (siRNA) therapeutics have soared in popularity due to their highly selective and potent targeting of faulty genes, providing a non-palliative approach to address diseases. Despite their potential, effective transfection of siRNA into cells requires the assistance of an accompanying vector. Vectors constructed from non-viral materials, while offering safer and non-cytotoxic profiles, often grapple with lackluster loading and delivery efficiencies, necessitating substantial milligram quantities of expensive siRNA to confer the desired downstream effects. We detail the recombinant synthesis of a diverse series of coiled-coil supercharged protein (CSP) biomaterials systematically designed to investigate the impact of two arginine point mutations (Q39R and N61R) and decahistidine tags on liposomal siRNA delivery. The most efficacious variant, N8, exhibits a twofold increase in its affinity to siRNA and achieves a twofold enhancement in transfection activity with minimal cytotoxicity in vitro. Subsequent analysis unveils the destabilizing effect of the Q39R and N61R supercharging mutations and the incorporation of C-terminal decahistidine tags on α-helical secondary structure. Cross-correlational regression analyses reveal that the amount of helical character in these mutants is key in N8's enhanced siRNA complexation and downstream delivery efficiency.

Show Abstract

Combining machine learning with structure-based protein design to predict and engineer post-translational modifications of proteins

Moritz Ertelt, V. Mulligan, et al.

Post-translational modifications (PTMs) of proteins play a vital role in their function and stability. These modifications influence protein folding, signaling, protein-protein interactions, enzyme activity, binding affinity, aggregation, degradation, and much more. To date, over 400 types of PTMs have been described, representing chemical diversity well beyond the genetically encoded amino acids. Such modifications pose a challenge to the successful design of proteins, but also represent a major opportunity to diversify the protein engineering toolbox. To this end, we first trained artificial neural networks (ANNs) to predict eighteen of the most abundant PTMs, including protein glycosylation, phosphorylation, methylation, and deamidation. In a second step, these models were implemented inside the computational protein modeling suite Rosetta, which allows flexible combination with existing protocols to model the modified sites and understand their impact on protein stability as well as function. Lastly, we developed a new design protocol that either maximizes or minimizes the predicted probability of a particular site being modified. We find that this combination of ANN prediction and structure-based design can enable the modification of existing, as well as the introduction of novel, PTMs. The potential applications of our work include, but are not limited to, glycan masking of epitopes, strengthening protein-protein interactions through phosphorylation, as well as protecting proteins from deamidation liabilities. These applications are especially important for the design of new protein therapeutics where PTMs can drastically change the therapeutic properties of a protein. Our work adds novel tools to Rosetta’s protein engineering toolbox that allow for the rational design of PTMs.

Show Abstract

ERK inhibits Cic repressor function via multisite phosphorylation

Sayantanee Paul, Khandan Ilkhani, S. Shvartsman, et al.

The receptor tyrosine kinase (RTK)/Extracellular Signal-Regulated Kinase (ERK) signaling pathway controls cell proliferation, differentiation, and survival. How ERK activation is relayed to its phosphorylation targets is not well understood. The transcriptional repressor Capicua (Cic) has emerged as a key target for ERK-mediated downregulation in Drosophila and mammals, and mutations in human CIC result in cancer and neurological diseases. Phosphorylation by ERK is critical for Cic downregulation, but the identities of phosphosites in Drosophila Cic are unknown. Here, we identify sites of phosphorylation in Cic that are directly targeted by ERK and validate their developmental functions in vivo using mutant Cic variants. Cic phosphosites are distributed throughout the length of the protein, and a group of centrally located sites appears to have a primary role in Cic downregulation. Cic mutated in 20 high-confidence sites behaves as a “super-repressor” in vivo that is largely insensitive to ERK-mediated downregulation, despite fully retaining the ability to bind to ERK. No single site is sufficient to turn off Cic activity; instead, we find that ERK must phosphorylate multiple sites in Cic simultaneously to achieve full downregulation. This multisite phosphorylation likely targets phosphodegrons that are recognized by ubiquitin ligases such as Ago/FBXW7 and contributes to Cic degradation. This study advances our understanding of the molecular mechanisms of signal interpretation downstream of the RTK/ERK signaling network.

Show Abstract
March 14, 2024

Ensemble Detection of DNA Engineering Signatures

Aaron Adler, Joel S. Bader, A. Persikov

Synthetic biology is creating genetically engineered organisms at an increasing rate for many potentially valuable applications, but this potential comes with the risk of misuse or accidental release. To begin to address this issue, we have developed a system called GUARDIAN that can automatically detect signatures of engineering in DNA sequencing data, and we have conducted a blinded test of this system using a curated Test and Evaluation (T&E) data set. GUARDIAN uses an ensemble approach based on the guiding principle that no single approach is likely to be able to detect engineering with perfect accuracy. Critically, ensembling enables GUARDIAN to detect sequence inserts in 13 target organisms with a high degree of specificity that requires no subject matter expert (SME) review.

Show Abstract

A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer’s disease vulnerable neurons

Patricia Rodriguez-Rodriguez, Luis Enrique Arroyo-Garcia, O. Troyanskaya, et al.

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer’s disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology.

We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer’s disease.

The existence of a cell-autonomous mechanism linking Alzheimer’s disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer’s disease.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.