381 Publications

Integral formulation of Klein-Gordon singular waveguides

Guillaume Bal, Jeremy Hoskins, S. Quinn, M. Rachh

We consider the analysis of singular waveguides separating insulating phases in two-space dimensions. The insulating domains are modeled by a massive Schrödinger equation and the singular waveguide by appropriate jump conditions along the one-dimensional interface separating the insulators. We present an integral formulation of the problem and analyze its mathematical properties. We also implement a fast multipole and sweeping-accelerated iterative algorithm for solving the integral equations, and demonstrate numerically the fast convergence of this method. Several numerical examples of solutions and scattering effects illustrate our theory.

Show Abstract

New Statistical Metric for Robust Target Detection in Cryo-EM Using 2DTM

Kexin Zhang, P. Cossio, A. Rangan, Bronwyn Lucas, Nikolaus Grigorieff

2D template matching (2DTM) can be used to detect molecules and their assemblies in cellular cryo-EM images with high positional and orientational accuracy. While 2DTM successfully detects spherical targets such as large ribosomal subunits, challenges remain in detecting smaller and more aspherical targets in various environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-value, is developed to extend the 2DTM framework to more complex applications. The 2DTM p-value combines information from two previously used 2DTM metrics, namely the 2DTM signal-to-noise ratio (SNR) and z-score, which are derived from the cross-correlation coefficient between the target and the template. The 2DTM p-value demonstrates robust detection accuracies under various imaging and sample conditions and outperforms the 2DTM SNR and z-score alone. Specifically, the 2DTM p-value improves the detection of aspherical targets such as a modified artificial tubulin patch particle (500 kDa) and a much smaller clathrin monomer (193 kDa) in simulated data. It also accurately recovers mature 60S ribosomes in yeast lamellae samples, even under conditions of increased Gaussian noise. The new metric will enable the detection of a wider variety of targets in both purified and cellular samples through 2DTM.

Show Abstract
2024

nifty-ls: Fast and Accurate Lomb–Scargle Periodograms Using a Non-uniform FFT

Lehman H. Garrison, D. Foreman-Mackey, Yu-hsuan Shih, A. Barnett

We present nifty-ls, a software package for fast and accurate evaluation of the Lomb–Scargle periodogram. nifty-ls leverages the fact that Lomb–Scargle can be computed using a non-uniform fast Fourier transform (NUFFT), which we evaluate with the Flatiron Institute NUFFT package (finufft). This approach achieves a many-fold speedup over the Press & Rybicki method as implemented in Astropy and is simultaneously many orders of magnitude more accurate. nifty-ls also supports fast evaluation on GPUs via CUDA and integrates with the Astropy Lomb–Scargle interface. nifty-ls is publicly available at https://github.com/flatironinstitute/nifty-ls/.

Show Abstract

A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials

F. Fryklund, L. Greengard, S. Jiang, Samuel Potter

Over the last two decades, several fast, robust, and high-order accurate methods have been developed for solving the Poisson equation in complicated geometry using potential theory. In this approach, rather than discretizing the partial differential equation itself, one first evaluates a volume integral to account for the source distribution within the domain, followed by solving a boundary integral equation to impose the specified boundary conditions. Here, we present a new fast algorithm which is easy to implement and compatible with virtually any discretization technique, including unstructured domain triangulations, such as those used in standard finite element or finite volume methods. Our approach combines earlier work on potential theory for the heat equation, asymptotic analysis, the nonuniform fast Fourier transform (NUFFT), and the dual-space multilevel kernel-splitting (DMK) framework. It is insensitive to flaws in the triangulation, permitting not just nonconforming elements, but arbitrary aspect ratio triangles, gaps and various other degeneracies. On a single CPU core, the scheme computes the solution at a rate comparable to that of the fast Fourier transform (FFT) in work per gridpoint.

Show Abstract

Coordinate complexification for the Helmholtz equation with Dirichlet boundary conditions in a perturbed half-space

C. Epstein, L. Greengard, Jeremy Hoskins, S. Jiang, M. Rachh

We present a new complexification scheme based on the classical double layer potential for the solution of the Helmholtz equation with Dirichlet boundary conditions in compactly perturbed half-spaces in two and three dimensions. The kernel for the double layer potential is the normal derivative of the free-space Green's function, which has a well-known analytic continuation into the complex plane as a function of both target and source locations. Here, we prove that - when the incident data are analytic and satisfy a precise asymptotic estimate - the solution to the boundary integral equation itself admits an analytic continuation into specific regions of the complex plane, and satisfies a related asymptotic estimate (this class of data includes both plane waves and the field induced by point sources). We then show that, with a carefully chosen contour deformation, the oscillatory integrals are converted to exponentially decaying integrals, effectively reducing the infinite domain to a domain of finite size. Our scheme is different from existing methods that use complex coordinate transformations, such as perfectly matched layers, or absorbing regions, such as the gradual complexification of the governing wavenumber. More precisely, in our method, we are still solving a boundary integral equation, albeit on a truncated, complexified version of the original boundary. In other words, no volumetric/domain modifications are introduced. The scheme can be extended to other boundary conditions, to open wave guides and to layered media. We illustrate the performance of the scheme with two and three dimensional examples.

Show Abstract

A comprehensive exploration of quasisymmetric stellarators and their coil sets

A. Giuliani, Eduardo Rodríguez, M. Spivak

We augment the `QUAsi-symmetric Stellarator Repository' (QUASR) to include vacuum field stellarators with quasihelical symmetry using a globalized optimization workflow. The database now has almost 370,000 quasisaxisymmetry and quasihelically symmetric devices along with coil sets, optimized for a variety of aspect ratios, rotational transforms, and discrete rotational symmetries. This paper outlines a couple of ways to explore and characterize the data set. We plot devices on a near-axis quasisymmetry landscape, revealing close correspondence to this predicted landscape. We also use principal component analysis to reduce the dimensionality of the data so that it can easily be visualized in two or three dimensions. Principal component analysis also gives a mechanism to compare the new devices here to previously published ones in the literature. We are able to characterize the structure of the data, observe clusters, and visualize the progression of devices in these clusters. These techniques reveal that the data has structure, and that typically one, two or three principal components are sufficient to characterize it. QUASR is archived at this https URL and can be explored online at this http URL.

Show Abstract

A Method of Fundamental Solutions for Large-Scale 3D Elastance and Mobility Problems

Anna Broms, A. Barnett, Anna-Karin Tornberg

The method of fundamental solutions (MFS) is known to be effective for solving 3D Laplace and Stokes Dirichlet boundary value problems in the exterior of a large collection of simple smooth objects. Here we present new scalable MFS formulations for the corresponding elastance and mobility problems. The elastance problem computes the potentials of conductors with given net charges, while the mobility problem -- crucial to rheology and complex fluid applications -- computes rigid body velocities given net forces and torques on the particles. The key idea is orthogonal projection of the net charge (or forces and torques) in a rectangular variant of a "completion flow". The proposal is compatible with one-body preconditioning, resulting in well-conditioned square linear systems amenable to fast multipole accelerated iterative solution, thus a cost linear in the particle number. For large suspensions with moderate lubrication forces, MFS sources on inner proxy-surfaces give accuracy on par with a well-resolved boundary integral formulation. Our several numerical tests include a suspension of 10000 nearby ellipsoids, using 26 million total preconditioned degrees of freedom, where GMRES converges to five digits of accuracy in under two hours on one workstation.

Show Abstract

Classical variational phase-field models cannot predict fracture nucleation

Oscar Lopez-Pamies, John E. Dolbow, G. Francfort, Christopher J. Larsen

Notwithstanding the evidence against them, classical variational phase-field models continue to be used and pursued in an attempt to describe fracture nucleation in elastic brittle materials. In this context, the main objective of this paper is to provide a comprehensive review of the existing evidence against such a class of models as descriptors of fracture nucleation. To that end, a review is first given of the plethora of experimental observations of fracture nucleation in nominally elastic brittle materials under quasi-static loading conditions, as well as of classical variational phase-field models, without and with energy splits. These models are then confronted with the experimental observations. The conclusion is that they cannot possibly describe fracture nucleation in general. This because classical variational phase-field models cannot account for material strength as an independent macroscopic material property. The last part of the paper includes a brief summary of a class of phase-field models that can describe fracture nucleation. It also provides a discussion of how pervasively material strength has been overlooked in the analysis of fracture at large, as well as an outlook into the modeling of fracture nucleation beyond the basic setting of elastic brittle materials.

Show Abstract

Decomposing imaginary time Feynman diagrams using separable basis functions: Anderson impurity model strong coupling expansion

J. Kaye, Zhen Huang, Hugo Strand, Denis Golez

We present a deterministic algorithm for the efficient evaluation of imaginary time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an $M$th-order diagram at inverse temperature $\beta$ and spectral width $\omega_{\max}$ from $\mathcal{O}((\beta \omega_{\max})^{2M-1})$ for a direct quadrature to $\mathcal{O}(M (\log (\beta \omega_{\max}))^{M+1})$, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multi-band impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca$_2$RuO$_4$, demonstrating the promise of the method for modeling realistic strongly correlated multi-band materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust black-box evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.

Show Abstract

Cosmological constraints from non-Gaussian and nonlinear galaxy clustering using the SimBIG inference framework

ChangHoon Hahn, Pablo Lemos, Liam Parker, B. Régaldo-Saint Blancard, M. Eickenberg, Shirley Ho, Ph.D. , Jiamin Hou, Elena Massara , Chirag Modi , Azadeh Moradinezhad Dizgah, David Spergel, Ph.D.

The standard ΛCDM cosmological model predicts the presence of cold dark matter, with the current accelerated expansion of the Universe driven by dark energy. This model has recently come under scrutiny because of tensions in measurements of the expansion and growth histories of the Universe, parameterized using H0 and S8. The three-dimensional clustering of galaxies encodes key cosmological information that addresses these tensions. Here we present a set of cosmological constraints using simulation-based inference that exploits additional non-Gaussian information on nonlinear scales from galaxy clustering, inaccessible with current analyses. We analyse a subset of the Baryon Oscillation Spectroscopic Survey (BOSS) galaxy survey using SimBIG, a new framework for cosmological inference that leverages high-fidelity simulations and deep generative models. We use two clustering statistics beyond the standard power spectrum: the bispectrum and a summary of the galaxy field based on a convolutional neural network. We constrain H0 and S8 1.5 and 1.9 times more tightly than power spectrum analyses. With this increased precision, our constraints are competitive with those of other cosmological probes, even with only 10% of the full BOSS volume. Future work extending SimBIG to upcoming spectroscopic galaxy surveys (DESI, PFS, Euclid) will produce improved cosmological constraints that will develop understanding of cosmic tensions.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.