2596 Publications

Feature-guided score diffusion for sampling conditional densities

Score diffusion methods can learn probability densities from samples. The score of the noise-corrupted density is estimated using a deep neural network, which is then used to iteratively transport a Gaussian white noise density to a target density. Variants for conditional densities have been developed, but correct estimation of the corresponding scores is difficult. We avoid these difficulties by introducing an algorithm that guides the diffusion with a projected score. The projection pushes the image feature vector towards the feature vector centroid of the target class. The projected score and the feature vectors are learned by the same network. Specifically, the image feature vector is defined as the spatial averages of the channels activations in select layers of the network. Optimizing the projected score for denoising loss encourages image feature vectors of each class to cluster around their centroids. It also leads to the separations of the centroids. We show that these centroids provide a low-dimensional Euclidean embedding of the class conditional densities. We demonstrate that the algorithm can generate high quality and diverse samples from the conditioning class. Conditional generation can be performed using feature vectors interpolated between those of the training set, demonstrating out-of-distribution generalization.

Show Abstract

Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix

C. Margossian, L. Saul

Given an intractable target density p, variational inference (VI) attempts to find the best approximation q from a tractable family Q. This is typically done by minimizing the exclusive Kullback-Leibler divergence, KL(q||p). In practice, Q is not rich enough to contain p, and the approximation is misspecified even when it is a unique global minimizer of KL(q||p). In this paper, we analyze the robustness of VI to these misspecifications when p exhibits certain symmetries and Q is a location-scale family that shares these symmetries. We prove strong guarantees for VI not only under mild regularity conditions but also in the face of severe misspecifications. Namely, we show that (i) VI recovers the mean of p when p exhibits an \textit{even} symmetry, and (ii) it recovers the correlation matrix of p when in addition~p exhibits an \textit{elliptical} symmetry. These guarantees hold for the mean even when q is factorized and p is not, and for the correlation matrix even when~q and~p behave differently in their tails. We analyze various regimes of Bayesian inference where these symmetries are useful idealizations, and we also investigate experimentally how VI behaves in their absence.

Show Abstract

Heterogeneity in ligand-bound TRPV1: A comparison of methods in cryo-EM and molecular dynamics simulation

M. Astore, R. Blackwell, David Silva-Sánchez, P. Cossio, S. Hanson

Cryogenic electron microscopy (cryo-EM) has emerged as a powerful method for resolving the atomistic details of cellular components. In recent years, several computational methods have been developed to study the heterogeneity of molecules in single-particle cryo-EM. In this study, we analyzed a publicly available single-particle dataset of TRPV1 using five of these methods: 3D Flexible Refinement, 3D Variability Analysis, cryoDRGN, ManifoldEM, and Bayesian ensemble reweighting. Beyond what we initially expected, we have found that this dataset contains significant heterogeneity— indicating that single particle datasets likely contain a rich spectrum of biologically relevant states. Further, we have found that different methods are best suited to studying different kinds of heterogeneity, with some methods being more sensitive to either compositional or conformational heterogeneity. We also apply a combination of Bayesian ensemble reweighting and molecular dynamics as supporting evidence for the presence of these rarer states within the sample. Finally, we developed a quantitative metric based on the analysis of the singular value decomposition and power spectra to compare the resulting volumes from each method. This work represents a detailed view of the variable outcomes of different heterogeneity methods used to analyze a single real dataset and presents a pathway to a deeper understanding of the biology of complex macromolecules like the TRPV1 ion channel.

Show Abstract
October 11, 2024

Comparing the local information geometry across several image representations

D. Lipshutz, J. Feather, S. Harvey, A. Williams, E. P. Simoncelli

We propose a framework for comparing a set of image representations (artificial or biological) in terms of their sensitivities to local distortions. We quantify the local geometry of a representation using the Fisher information matrix (FIM), a standard statistical tool for characterizing the sensitivity to local distortions of a stimulus, and use this as a substrate for a metric on the local geometry of representations in the vicinity of a base image. This metric may then be used to optimally differentiate a set of models, by optimizing for a pair of distortions that maximize the variance of the models under this metric. We use the framework to compare a set of simple models of the early visual system, identifying a novel set of image distortions that allow immediate comparison of the models by visual inspection. In a second example, we show that the method can reveal distinctions between standard and adversarially trained object recognition networks.

Show Abstract

Equivalence between representational similarity analysis, centered kernel alignment, and canonical correlations analysis

Centered kernel alignment (CKA) and representational similarity analysis (RSA) of dissimilarity matrices are two popular methods for comparing neural systems in terms of representational geometry. Although they follow a conceptually similar approach, typical implementations of CKA and RSA tend to result in numerically different outcomes. Here, I show that these two approaches are largely equivalent once one incorporates a mean-centering step into RSA. This equivalence holds for both linear and nonlinear variants of these methods. These connections are simple to derive, but appear to have been thus far overlooked in the context of comparing neural representations. By unifying these measures, this paper hopes to simplify a complex and fragmented literature on this subject.Competing Interest StatementThe authors have declared no competing interest.

Show Abstract

Mechanics and morphology of proliferating cell collectives with self-inhibiting growth

S. Weady, Bryce Palmer, A. Lamson, Taeyoon Kim, R. Farhadifar, M. Shelley

We study the dynamics of proliferating cell collectives whose microscopic constituents’ growth is inhibited by macroscopic growth-induced stress. Discrete particle simulations of a growing collective show the emergence of concentric-ring patterns in cell size whose spatiotemporal structure is closely tied to the individual cell’s stress response. Motivated by these observations, we derive a multiscale continuum theory whose parameters map directly to the discrete model. Analytical solutions of this theory show the concentric patterns arise from anisotropically accumulated resistance to growth over many cell cycles. This Letter shows how purely mechanical processes can affect the internal patterning and morphology of cell collectives, and provides a concise theoretical framework for connecting the micro- to macroscopic dynamics of proliferating matter.

Show Abstract
October 10, 2024

Inferring biological processes with intrinsic noise from cross-sectional data

Inferring dynamical models from data continues to be a significant challenge in computational biology, especially given the stochastic nature of many biological processes. We explore a common scenario in omics, where statistically independent cross-sectional samples are available at a few time points, and the goal is to infer the underlying diffusion process that generated the data. Existing inference approaches often simplify or ignore noise intrinsic to the system, compromising accuracy for the sake of optimization ease. We circumvent this compromise by inferring the phase-space probability flow that shares the same time-dependent marginal distributions as the underlying stochastic process. Our approach, probability flow inference (PFI), disentangles force from intrinsic stochasticity while retaining the algorithmic ease of ODE inference. Analytically, we prove that for Ornstein-Uhlenbeck processes the regularized PFI formalism yields a unique solution in the limit of well-sampled distributions. In practical applications, we show that PFI enables accurate parameter and force estimation in high-dimensional stochastic reaction networks, and that it allows inference of cell differentiation dynamics with molecular noise, outperforming state-of-the-art approaches.

Show Abstract
October 10, 2024

What Representational Similarity Measures Imply about Decodable Information

S. Harvey, D. Lipshutz, A. Williams

Neural responses encode information that is useful for a variety of downstream tasks. A common approach to understand these systems is to build regression models or “decoders” that reconstruct features of the stimulus from neural responses. Here, we investigate how to leverage this perspective to quantify the similarity of different neural systems. This is distinct from typical motivations behind neural network similarity measures like centered kernel alignment (CKA), canonical correlation analysis (CCA), and Procrustes shape distance, which highlight geometric intuition and invariances to orthogonal or affine transformations. We show that CKA, CCA, and other measures can be equivalently motivated from similarity in decoding patterns. Specifically, these measures quantify the average alignment between optimal linear readouts across a distribution of decoding tasks. We also show that the Procrustes shape distance upper bounds the distance between optimal linear readouts and that the converse holds for representations with low participation ratio. Overall, our work demonstrates a tight link between the geometry of neural representations and the ability to linearly decode information. This perspective suggests new ways of measuring similarity between neural systems and also provides novel, unifying interpretations of existing measures.

Show Abstract

Periodic Local Coupled-Cluster Theory for Insulators and Metals

Hong-Zhou Ye, T. Berkelbach

We describe the implementation details of periodic local coupled-cluster theory with single and double excitations (CCSD) and perturbative triple excitations [CCSD(T)] using local natural orbitals (LNOs) and $k$-point symmetry. We discuss and compare several choices for orbital localization, fragmentation, and LNO construction. By studying diamond and lithium, we demonstrate that periodic LNO-CC theory can be applied with equal success to both insulators and metals, achieving speedups of two to three orders of magnitude even for moderately sized $k$-point meshes. Our final predictions of the equilibrium cohesive energy, lattice constant, and bulk modulus for diamond and lithium are in good agreement with previous theoretical predictions and experimental results.

Show Abstract

Self-propulsion, flocking and chiral active phases from particles spinning at intermediate Reynolds numbers

Panyu Chen, S. Weady, M. Shelley, et al.

Vorticity, a measure of the local rate of rotation of a fluid element, is the driver of incompressible flow. In viscous fluids, powering bulk flows requires the continuous injection of vorticity from boundaries to counteract the diffusive effects of viscosity. Here we power a flow from within by suspending approximately cylindrical particles and magnetically driving them to rotate at Reynolds numbers in the intermediate range. We find that a single particle generates a localized three-dimensional region of vorticity around it—which we call a vortlet—that drives a number of remarkable behaviours. Slight asymmetries in the particle shape can deform the vortlet and cause the particle to self-propel. Interactions between vortlets are similarly rich, generating bound dynamical states. When a large number of vortlets interact, they spontaneously form collectively moving flocks. These flocks remain coherent while propelling, splitting and merging. If enough particles are added so as to saturate the flow chamber, a homogeneous three-dimensional active chiral fluid of vortlets is formed, which can be manipulated with gravity or flow chamber boundaries, leading to lively collective dynamics. Our findings demonstrate an inertial regime for synthetic active matter, provide a controlled physical system for the quantitative study of three-dimensional flocking in non-sentient systems and establish a platform for the study of three-dimensional active chiral fluids.

Show Abstract
October 8, 2024
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.