2573 Publications

CMB-HD: Astro2020 RFI Response

Neelima Sehgal, S. Aiola, Yashar Akrami, ..., D. Han, M. Hasselfield, ..., S. Naess, ..., D. Spergel, ..., B. Wandelt, et. al.

CMB-HD is a proposed ultra-deep (0.5 uk-arcmin), high-resolution (15 arcseconds) millimeter-wave survey over half the sky that would answer many outstanding questions in both fundamental physics of the Universe and astrophysics. This survey would be delivered in 7.5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors.

Show Abstract

One-dimensional flat bands in twisted bilayer germanium selenide

L. Xian, D. M. Kennes, M. Claassen, A. Rubio

Experimental advances in the fabrication and characterization of few-layer materials stacked at a relative twist of small angle have recently shown the emergence of flat energy bands. As a consequence electron interactions become relevant, providing inroads into the physics of strongly correlated two-dimensional systems. Here, we demonstrate by combining large scale ab initio simulations with numerically exact strong correlation approaches that an effective one-dimensional system emerges upon stacking two twisted sheets of GeSe, in marked contrast to all moiré systems studied so far. This not only allows to study the necessarily collective nature of excitations in one dimension, but can also serve as a promising platform to scrutinize the crossover from two to one dimension in a controlled setup by varying the twist angle, which provides an intriguing benchmark with respect to theory. We thus establish twisted bilayer GeSe as an intriguing inroad into the strongly correlated physics of lowdimensional systems.

Show Abstract

A new probe of Axion-Like Particles: CMB polarization distortions due to cluster magnetic fields

Suvodip Mukherjee, D. Spergel, Rishi Khatri, B. Wandelt

We propose using the upcoming Cosmic Microwave Background (CMB) ground based experiments to detect the signal of ALPs (Axion like particles) interacting with magnetic fields in galaxy clusters. The conversion between CMB photons and ALPs in the presence of the cluster magnetic field can cause a polarized spectral distortion in the CMB around a galaxy cluster. The strength of the signal depends upon the redshift of the galaxy cluster and will exhibit a distinctive spatial profile around it depending upon the structure of electron density and magnetic field. This distortion produces a different shape from the other known spectral distortions like y-type and μ-type and hence are separable from the multi-frequency CMB observation. The spectrum is close to kinematic Sunyaev-Zeldovich (kSZ) signal but can be separated from it using the polarization information. For the future ground-based CMB experiments such as Simons Observatory and CMB-S4, we estimate the measurability of this signal in the presence of foreground contamination, instrument noise and CMB anisotropies. This new avenue can probe the photon-ALP coupling over the ALP mass range from 10−13 eV to 10−12 eV with two orders of magnitude better accuracy from CMB-S4 than the current existing bounds.

Show Abstract

A Bayesian nonparametric approach to super-resolution single-molecule localization

M. Gabitto, H. Marie-Nelly, A. Pakman, A. Pataki, X. Darzacq, M. Jordan

We consider the problem of single-molecule identification in super-resolution microscopy. Super-resolution microscopy overcomes the diffraction limit by localizing individual fluorescing molecules in a field of view. This is particularly difficult since each individual molecule appears and disappears randomly across time and because the total number of molecules in the field of view is unknown. Additionally, data sets acquired with super-resolution microscopes can contain a large number of spurious fluorescent fluctuations caused by background noise.

To address these problems, we present a Bayesian nonparametric framework capable of identifying individual emitting molecules in super-resolved time series. We tackle the localization problem in the case in which each individual molecule is already localized in space. First, we collapse observations in time and develop a fast algorithm that builds upon the Dirichlet process. Next, we augment the model to account for the temporal aspect of fluorophore photo-physics. Finally, we assess the performance of our methods with ground-truth data sets having known biological structure.

Show Abstract
February 25, 2020

Weak-to-Strong Light-Matter Coupling and Dissipative Dynamics from First Principles

D. S. Wang, T. Neuman, J. Flick, P. Narang

Cavity-mediated light-matter coupling can dramatically alter opto-electronic and physico-chemical properties of a molecule. Ab initio theoretical predictions of these systems need to combine non-perturbative, many-body electronic structure theory-based methods with cavity quantum electrodynamics and theories of open quantum systems. Here we generalize quantum-electrodynamical density functional theory to account for dissipative dynamics and describe coupled cavity-molecule interactions in the weak-to-strong-coupling regimes. Specifically, to establish this generalized technique, we study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling. By tuning the coupling we achieve cavity-mediated energy transfer between electronic excited states. This generalized ab initio quantum-electrodynamical density functional theory treatment can be naturally extended to describe cavity-mediated interactions in arbitrary electromagnetic environments, accessing correlated light-matter observables and thereby closing the gap between electronic structure theory and quantum optics.

Show Abstract

Finite temperature density matrix embedding theory

Chong Sun, Ushnish Ray, Zhi-Hao Cui, M. Stoudenmire, M. Ferrero, G. K. Chan

We describe a formulation of the density matrix embedding theory at finite temperature. We present a generalization of the ground-state bath orbital construction that embeds a mean-field finite-temperature density matrix up to a given order in the Hamiltonian, or the Hamiltonian up to a given order in the density matrix. We assess the performance of the finite-temperature density matrix embedding on the one-dimensional Hubbard model both at half-filling and away from it, and the two-dimensional Hubbard model at half-filling, comparing to exact data where available, as well as results from finite-temperature density matrix renormalization group, dynamical mean-field theory, and dynamical cluster approximations. The accuracy of finite-temperature density matrix embedding appears comparable to that of the ground-state theory, with, at most, a modest increase in bath size, and competitive with that of cluster dynamical mean-field theory.

Show Abstract

Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening

Eric Agol, R. Luger, D. Foreman-Mackey

We derive analytic, closed-form solutions for the light curve of a planet transiting a star with a limb darkening profile which is a polynomial function of the stellar elevation, up to arbitrary integer order. We provide improved analytic expressions for the uniform, linear, and quadratic limb-darkened cases, as well as novel expressions for higher order integer powers of limb darkening. The formulae are crafted to be numerically stable over the expected range of usage. We additionally present analytic formulae for the partial derivatives of instantaneous flux with respect to the radius ratio, impact parameter, and limb darkening coefficients. These expressions are rapid to evaluate, and compare quite favorably in speed and accuracy to existing transit light curve codes. We also use these expressions to numerically compute the first partial derivatives of exposure-time averaged transit light curves with respect to all model parameters. An additional application is modeling eclipsing binary or eclipsing multiple star systems in cases where the stars may be treated as spherically symmetric. We provide code which implements these formulae in C++, Python, IDL, and Julia, with tests and examples of usage.

Show Abstract

Direct comparison of many-body methods for realistic electronic Hamiltonians

K. T. Williams, Y. Yao, Jia Li, L. Chen, H. Shi, M. Motta, C. Niu, U. Ray, S. Guo, R. J. Anderson, Junhao Li, L. N. Tran, Chia-Nan Yeh, B. Mussard, S. Sharma, F. Bruneval, M. van Schilfgaarde, G. H. Booth, G. Kin-Lic Chan, S. Zhang, E. Gull, D. Zgid, A. Millis, C. J. Umrigar, L. K. Wagner

A large collaboration carefully benchmarks 20 first-principles many-body electronic structure methods on a test set of seven transition metal atoms and their ions and monoxides. Good agreement is attained between three systematically converged methods, resulting in experiment-free reference values. These reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-electron problem. The most accurate methods obtain energies indistinguishable from experimental results, with the agreement mainly limited by the experimental uncertainties. A comparison between methods enables a unique perspective on calculations of many-body systems of electrons.

Show Abstract

Biexciton Condensation in Electron-hole Doped Hubbard Bilayers — A Sign-Problem-Free Quantum Monte Carlo Study

X.-X. Huang, M. Claassen, E. W. Huang, B. Moritz, T. P. Devereaux

The bilayer Hubbard model with electron-hole doping is an ideal platform to study excitonic orders due to suppressed recombination via spatial separation of electrons and holes. However, suffering from the sign problem, previous quantum Monte Carlo studies could not arrive at an unequivocal conclusion regarding the presence of phases with clear signatures of excitonic condensation in bilayer Hubbard models. Here, we develop a determinant quantum Monte Carlo algorithm for the bilayer Hubbard model that is sign-problem-free for equal and opposite doping in the two layers and study excitonic order and charge and spin density modulations as a function of chemical potential difference between the two layers, on-site Coulomb repulsion, and interlayer interaction. In the intermediate coupling regime and in proximity to the SU(4)-symmetric point, we find a biexcitonic condensate phase at finite electron-hole doping, as well as a competing (π,π) charge density wave state. We extract the Berezinskii-Kosterlitz-Thouless transition temperature from superfluid density and a finite-size scaling analysis of the correlation functions and explain our results in terms of an effective biexcitonic hard-core boson model.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.