2573 Publications

Beyond second-order convergence in simulations of magnetised binary neutron stars with realistic microphysics

E. Most, L. Jens Papenfort, Luciano Rezzolla

We investigate the impact of using high-order numerical methods to study the merger of magnetised neutron stars with finite-temperature microphysics and neutrino cooling in full general relativity. By implementing a fourth-order accurate conservative finite-difference scheme we model the inspiral together with the early post-merger and highlight the differences to traditional second-order approaches at the various stages of the simulation. We find that even for finite-temperature equations of state, convergence orders higher than second order can be achieved in the inspiral and post-merger for the gravitational-wave phase. We further demonstrate that the second-order scheme overestimates the amount of proton-rich shock-heated ejecta, which can have an impact on the modelling of the dynamical part of the kilonova emission. Finally, we show that already at low resolution the growth rate of the magnetic energy is consistently resolved by using a fourth-order scheme.

Show Abstract

SpikeInterface, a unified framework for spike sorting

A. P. Buccino, C. L. Hurwitz, J. Magland, S. Garcia, J. H. Siegle, R. Hurwitz, M. H. Hennig

Given the importance of understanding single-neuron activity, much development has been directed towards improving the performance and automation of spike sorting. These developments, however, introduce new challenges, such as file format incompatibility and reduced interoperability, that hinder benchmarking and preclude reproducible analysis. To address these limitations, we developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to standardize extracellular data file operations. With a few lines of code and regardless of the underlying data format, researchers can: run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. In this paper, we provide an overview of SpikeInterface and, with applications to both real and simulated extracellular datasets, demonstrate how it can improve the accessibility, reliability, and reproducibility of spike sorting in preparation for the widespread use of large-scale electrophysiology.

Show Abstract
October 7, 2019

Rotating Membrane Inclusions Crystallize Through Hydrodynamic and Steric Interactions

We show that rotating membrane inclusions can crystallize due to combined hydrodynamic and steric interactions. Alone, steric repulsion of unconfined particles, even with thermal fluctuations, does not lead to crystallization, nor do rotational hydrodynamic interactions which allow only a marginally stable lattice. Hydrodynamic interactions enable particles to explore states inaccessible to a nonrotational system, yet, unlike Brownian motion, Hamiltonian conservation confines the ensemble which, when combined with steric interactions, anneals into a stable crystal state.

Show Abstract

Light–Matter Response in Nonrelativistic Quantum Electrodynamics

Johannes Flick, Davis M. Welakuh, Michael Ruggenthaler, Heiko Appel, A. Rubio

We derive the full linear-response theory for nonrelativistic quantum electrodynamics in the long wavelength limit and provide a practical framework to solve the resulting equations by using quantum-electrodynamical density-functional theory. We highlight how the coupling between quantized light and matter changes the usual response functions and introduces cross-correlated light-matter response functions. These cross-correlation responses lead to measurable changes in Maxwell’s equations due to the quantum-matter-mediated photon–photon interactions. Key features of treating the combined matter-photon response are that natural lifetimes of excitations become directly accessible from first-principles, changes in the electronic structure due to strong light-matter coupling are treated fully nonperturbatively, and self-consistent solutions of the back-reaction of matter onto the photon vacuum and vice versa are accounted for. By introducing a straightforward extension of the random-phase approximation for the coupled matter-photon problem, we calculate the ab initio spectra for a real molecular system that is coupled to the quantized electromagnetic field. Our approach can be solved numerically very efficiently. The presented framework leads to a shift in paradigm by highlighting how electronically excited states arise as a modification of the photon field and that experimentally observed effects are always due to a complex interplay between light and matter. At the same time the findings provide a route to analyze as well as propose experiments at the interface between quantum chemistry, nanoplasmonics and quantum optics.

Show Abstract

Optimal control theory for quantum electrodynamics: an initial state problem

Alberto Castro, Heiko Appel, A. Rubio

In conventional quantum optimal control theory, the parameters that determine an external field are optimised to maximise some predefined function of the trajectory, or of the final state, of a matter system. The situation changes in the case of quantum electrodynamics, where the degrees of freedom of the radiation field are now part of the system. In consequence, instead of optimising an external field, the optimal control question turns into a optimisation problem for the many-body initial state of the combined matter-photon system. In the present work, we develop such an optimal control theory for quantum electrodynamics. We derive the equation that provides the gradient of the target function, which is often the occupation of some given state or subspace, with respect to the control variables that define the initial state. We choose the well-known Dicke model to study the possibilities of this technique. In the weak coupling regime, we find that Dicke states are the optimal matter states to reach Fock number states of the cavity mode with large fidelity, and vice versa, that Fock number states of the photon modes are the optimal states to reach the Dicke states. This picture does not prevail in the strong coupling regime. We have also considered the extended case with more than one mode. In this case, we find that increasing the number of two-level systems allows reaching a larger occupation of entangled photon targets.

Show Abstract

Fast integral equation methods for linear and semilinear heat equations in moving domains

J. Wang, L. Greengard, Shidong Jiang, Shravan Veerapaneni

We present a family of integral equation-based solvers for the linear or semilinear heat equation in complicated moving (or stationary) geometries. This approach has significant advantages over more standard finite element or finite difference methods in terms of accuracy, stability and space-time adaptivity. In order to be practical, however, a number of technical capabilites are required: fast algorithms for the evaluation of heat potentials, high-order accurate quadratures for singular and weakly integrals over space-time domains, and robust automatic mesh refinement and coarsening capabilities. We describe all of these components and illustrate the performance of the approach with numerical examples in two space dimensions.

Show Abstract
October 2, 2019

Photo-enhanced metastable c-axis electrodynamics in stripe ordered cuprate La_1.885Ba_0.115CuO_4

Kevin A. Cremin, Jingdi Zhang, Christopher C. Homes, Genda D. Gu, Zhiyuan Sun, Michael M. Fogler, A. Millis, Dimitri N. Basov, Richard D. Averitt

Quantum materials are amenable to nonequilibrium manipulation with light, enabling modification and control of macroscopic properties. Light-based augmentation of superconductivity is particularly intriguing. Copper-oxide superconductors exhibit complex interplay between spin order, charge order, and superconductivity, offering the prospect of enhanced coherence by altering the balance between competing orders. We utilize terahertz time-domain spectroscopy to monitor the c-axis Josephson plasma resonance (JPR) in La2−xBaxCuO4 (x = 0.115) as a direct probe of superconductivity dynamics following excitation with near-infrared pulses. Starting from the superconducting state, c-axis polarized excitation with a fluence of 100 μJ/cm2 results in an increase of the far-infrared spectral weight by more than an order of magnitude as evidenced by a blueshift of the JPR, interpreted as resulting from nonthermal collapse of the charge order. The photoinduced signal persists well beyond our measurement window of 300 ps and exhibits signatures of spatial inhomogeneity. The electrodynamic response of this metastable state is consistent with enhanced superconducting fluctuations. Our results reveal that La2−xBaxCuO4 is highly sensitive to nonequilibrium excitation over a wide fluence range, providing an unambiguous example of photoinduced modification of order-parameter competition.

Show Abstract

A Future Percent-level Measurement of the Hubble Expansion at Redshift 0.8 with Advanced LIGO

W. Farr, Maya Fishbach, Jiani Ye, Daniel Holz

Simultaneous measurements of distance and redshift can be used to constrain the expansion history of the universe and associated cosmological parameters. Merging binary black hole (BBH) systems are standard sirens---their gravitational waveform provides direct information about the luminosity distance to the source. Because gravity is scale-free, there is a perfect degeneracy between the source masses and redshift; some non-gravitational information is necessary to break the degeneracy and determine the redshift of the source. Here we suggest that the pair instability supernova (PISN) process, thought to be the source of the observed upper-limit on the black hole (BH) mass in merging BBH systems at ∼45M⊙, imprints a mass scale in the population of BBH mergers and permits a measurement of the redshift-luminosity-distance relation with these sources. We simulate five years of BBH detections in the Advanced LIGO and Virgo detectors with realistic assumptions about the BBH merger rate, a mass distribution incorporating a smooth PISN cutoff, and measurement uncertainty. We show that after one year of operation at design sensitivity (circa 2021) the BBH population can constrain H(z) to 6.1% at a pivot redshift z≃0.8. After five years (circa 2025) the constraint improves to 2.9%. This measurement relies only on general relativity and the presence of a cutoff mass scale that is approximately fixed or calibrated across cosmic time; it is independent of any distance ladder or cosmological model. Observations by future ``third-generation'' gravitational wave detectors, which can see BBH mergers throughout the universe, would permit sub-percent cosmographical measurements to z≳4 within one month of observation.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.