2573 Publications

Reduced Density-Matrix Approach to Strong Matter-Photon Interaction

Florian Buchholz, Iris Theophilou, Soeren Ersbak Bang Nielsen, Michael Ruggenthaler, A. Rubio

We present a first-principles approach to electronic many-body systems strongly coupled to cavity modes in terms of matter–photon one-body reduced density matrices. The theory is fundamentally nonperturbative and thus captures not only the effects of correlated electronic systems but accounts also for strong interactions between matter and photon degrees of freedom. We do so by introducing a higher-dimensional auxiliary system that maps the coupled fermion-boson system to a dressed fermionic problem. This reformulation allows us to overcome many fundamental challenges of density-matrix theory in the context of coupled fermion-boson systems and we can employ conventional reduced density-matrix functional theory developed for purely fermionic systems. We provide results for one-dimensional model systems in real space and show that simple density-matrix approximations are accurate from the weak to the deep-strong coupling regime. This justifies the application of our method to systems that are too complex for exact calculations and we present first results, which show that the influence of the photon field depends sensitively on the details of the electronic structure.

Show Abstract

Fourier at the heart of computer music: From harmonic sounds to texture

Vincent Lostanlen, J. Andén, Mathieu Lagrange

Beyond the scope of thermal conduction, Joseph Fourier's treatise on the Analytical Theory of Heat (1822) profoundly altered our understanding of acoustic waves. It posits that any function of unit period can be decomposed into a sum of sinusoids, whose respective contributions represent some essential property of the underlying periodic phenomenon. In acoustics, such a decomposition reveals the resonant modes of a freely vibrating string. The introduction of Fourier series thus opened new research avenues on the modeling of musical timbre—a topic that was to become of crucial importance in the 1960s with the advent of computer-generated sounds. This article proposes to revisit the scientific legacy of Joseph Fourier through the lens of computer music research. We first discuss how the Fourier series marked a paradigm shift in our understanding of acoustics, supplanting the theory of consonance of harmonics in the Pythagorean monochord. Then, we highlight the utility of Fourier's paradigm via three practical problems in analysis–synthesis: the imitation of musical instruments, frequency transposition, and the generation of audio textures. Interestingly, each of these problems involves a different perspective on time–frequency duality, and stimulates a multidisciplinary interplay between research and creation that is still ongoing.

Show Abstract

Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation

S. A. Sato, P. Tang, M. A. Sentef, U. De Giovannini, H. Hübener, A. Rubio

Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet–Berry curvature also has a non-zero contribution. We further compute the Hall transport property of the massive Dirac fermion system with an intrinsic Hall effect in order to investigate the interplay of the intrinsic topological contribution and the extrinsic light-induced population contribution. As a result, we find that the contribution from the photocarrier population imbalance becomes significant in the strong field regime and it overcomes the intrinsic contribution. This finding clearly demonstrates that intrinsic transport properties of materials can be overwritten by external driving and may open a way to ultrafast optical-control of transport properties of materials.

Show Abstract

Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run

The LIGO Scientific Collaboration, the Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, ..., W. Farr, ..., Y. Levin, et. al.

The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study we present the results from a cross-correlation analysis on data from Advanced LIGO's second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW<6.0×10−8 for a frequency-independent (flat) background and ΩGW<4.8×10−8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

Show Abstract

Self-straining of actively crosslinked microtubule networks

S. Fürthauer, B. Lemma, P. Foster, S.Ems-McClung, Che-Hang Yu, C. Walczak, Z. Dogic, D. Needleman, M. Shelley

Cytoskeletal networks are foundational examples of active matter and central to self-organized structures in the cell. In vivo, these networks are active and densely crosslinked. Relating their large-scale dynamics to the properties of their constituents remains an unsolved problem. Here, we study an in vitro active gel made from aligned microtubules and XCTK2 kinesin motors. Using photobleaching, we demonstrate that the gel’s aligned microtubules, driven by motors, continually slide past each other at a speed independent of the local microtubule polarity and motor concentration. This phenomenon is also observed, and remains unexplained, in spindles. We derive a general framework for coarse graining microtubule gels crosslinked by molecular motors from microscopic considerations. Using microtubule–microtubule coupling through a force–velocity relationship for kinesin, this theory naturally explains the experimental results: motors generate an active strain rate in regions of changing polarity, which allows microtubules of opposite polarities to slide past each other without stressing the material.

Show Abstract

The stormy fluid dynamics of the living cell

Cell biology has its beginnings in the first observations of cells through primitive microscopes and in the formulation of cell theory, which postulates that cells are the fundamental building blocks of life. Light microscopes showed that the insides of cells contained complex structures, such as nuclei, spindles, and chromosomes. The advent of electron microscopy in the mid 20th century brought the first truly detailed views of cell innards. Images revealed complexity at all observable scales, including cell-spanning networks of polymers, intricate organelles made of membranes, and a variety of micron- to nanometer-sized sacs and granules such as vesicles, lipid droplets, and ribosomes. (For a glossary of cellular components, see the Quick Study by Ned Wingreen, Physics Today, September 2006, page 80.) Those structures are immersed in or part of the aqueous cytoplasm—the cell’s fluidic medium.

Scientists have known for centuries that some plant and amoeboid cells have cytoplasmic flow inside them, as illustrated in figure 1a. Modern light microscopy has shown that such directed motions in cells are quite common. Researchers have studied those flows using such sophisticated methods as particle imaging velocimetry and simulations (see figures 1b and 1c). Such flows underlie the most basic biological functions of cells and can be a cause, an effect, or both. In any case, understanding them requires the study of forces and stresses that are created from activity inside the cell itself.

Show Abstract
September 2, 2019

Ultrafast coupled charge and spin dynamics in strongly correlated NiO

K. Gillmeister, D. Golez, C. Chiang, N. Bittner, Y. Pavlyuk, J. Berakdar, P. Werner, W. Widdra

Charge excitations across an electronic band gap play an important role in opto-electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund's physics in strongly correlated photo-excited NiO. By combining time-resolved two-photon photoemission experiments with state-of-the-art numerical calculations, an ultrafast (≲ 10\,fs) relaxation due to Hund excitations and related photo-induced in-gap states are identified. Remarkably, the weight of these in-gap states displays long-lived coherent THz oscillations up to 2\,ps at low temperature. The frequency of these oscillations corresponds to the strength of the antiferromagnetic superexchange interaction in NiO and their lifetime vanishes as the Néel temperature is approached. Numerical simulations of a two-band t-J model reveal that the THz oscillations originate from the interplay between local many-body excitations and long-range antiferromagnetic order.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.