2596 Publications

Coordinate complexification for the Helmholtz equation with Dirichlet boundary conditions in a perturbed half-space

C. Epstein, L. Greengard, Jeremy Hoskins, S. Jiang, M. Rachh

We present a new complexification scheme based on the classical double layer potential for the solution of the Helmholtz equation with Dirichlet boundary conditions in compactly perturbed half-spaces in two and three dimensions. The kernel for the double layer potential is the normal derivative of the free-space Green's function, which has a well-known analytic continuation into the complex plane as a function of both target and source locations. Here, we prove that - when the incident data are analytic and satisfy a precise asymptotic estimate - the solution to the boundary integral equation itself admits an analytic continuation into specific regions of the complex plane, and satisfies a related asymptotic estimate (this class of data includes both plane waves and the field induced by point sources). We then show that, with a carefully chosen contour deformation, the oscillatory integrals are converted to exponentially decaying integrals, effectively reducing the infinite domain to a domain of finite size. Our scheme is different from existing methods that use complex coordinate transformations, such as perfectly matched layers, or absorbing regions, such as the gradual complexification of the governing wavenumber. More precisely, in our method, we are still solving a boundary integral equation, albeit on a truncated, complexified version of the original boundary. In other words, no volumetric/domain modifications are introduced. The scheme can be extended to other boundary conditions, to open wave guides and to layered media. We illustrate the performance of the scheme with two and three dimensional examples.

Show Abstract

Fixational eye movements enhance the precision of visual information transmitted by the primate retina

Eric G. Wu, Nora Brackbill, Colleen Rhoades, Alexandra Kling, Alex R. Gogliettino, Nishal P. Shah, Alexander Sher, Alan M. Litke, E. P. Simoncelli, E. J. Chichilnisky

Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.

Show Abstract

Geometric Effects in Large Scale Intracellular Flows

Olenka Jain, B. Chakrabarti, R. Farhadifar, Elizabeth R. Gavis, M. Shelley, S. Shvartsman

This work probes the role of cell geometry in orienting self-organized fluid flows in the late stage Drosophila oocyte. Recent theoretical work has shown that a model, which relies only on hydrodynamic interactions of flexible, cortically anchored microtubules (MTs) and the mechanical loads from molecular motors moving upon them, is sufficient to generate observed flows. While the emergence of flows has been studied in spheres, oocytes change shape during streaming and it was unclear how robust these flows are to the geometry of the cell. Here we use biophysical theory and computational analysis to investigate the role of geometry and find that the axis of rotation is set by the shape of the domain and that the flow is robust to biologically relevant perturbations of the domain shape. Using live imaging and 3D flow reconstruction, we test the predictions of the theory/simulation, finding consistency between the model and live experiments, further demonstrating a geometric dependence on flow direction in late-stage Drosophila oocytes.

Show Abstract
September 10, 2024

A comprehensive exploration of quasisymmetric stellarators and their coil sets

A. Giuliani, Eduardo Rodríguez, M. Spivak

We augment the `QUAsi-symmetric Stellarator Repository' (QUASR) to include vacuum field stellarators with quasihelical symmetry using a globalized optimization workflow. The database now has almost 370,000 quasisaxisymmetry and quasihelically symmetric devices along with coil sets, optimized for a variety of aspect ratios, rotational transforms, and discrete rotational symmetries. This paper outlines a couple of ways to explore and characterize the data set. We plot devices on a near-axis quasisymmetry landscape, revealing close correspondence to this predicted landscape. We also use principal component analysis to reduce the dimensionality of the data so that it can easily be visualized in two or three dimensions. Principal component analysis also gives a mechanism to compare the new devices here to previously published ones in the literature. We are able to characterize the structure of the data, observe clusters, and visualize the progression of devices in these clusters. These techniques reveal that the data has structure, and that typically one, two or three principal components are sufficient to characterize it. QUASR is archived at this https URL and can be explored online at this http URL.

Show Abstract

Disrupted developmental signaling induces novel transcriptional states

Aleena Patel, Vanessa Gonzalez, S. Shvartsman

Signaling pathways induce stereotyped transcriptional changes as stem cells progress into mature cell types during embryogenesis. Signaling perturbations are necessary to discover which genes are responsive or insensitive to pathway activity. However, gene regulation is additionally dependent on cell state-specific factors like chromatin modifications or transcription factor binding. Thus, transcriptional profiles need to be assayed in single cells to identify potentially multiple, distinct perturbation responses among heterogeneous cell states in an embryo. In perturbation studies, comparing heterogeneous transcriptional states among experimental conditions often requires samples to be collected over multiple independent experiments. Datasets produced in such complex experimental designs can be confounded by batch effects. We present Design-Aware Integration of Single Cell ExpEriments (DAISEE), a new algorithm that models perturbation responses in single-cell datasets with a complex experimental design. We demonstrate that DAISEE improves upon a previously available integrative non-negative matrix factorization framework, more efficiently separating perturbation responses from confounding variation. We use DAISEE to integrate newly collected single-cell RNA-sequencing datasets from 5-hour old zebrafish embryos expressing optimized photoswitchable MEK (psMEK), which globally activates the extracellular signal-regulated kinase (ERK), a signaling molecule involved in many cell specification events. psMEK drives some cells that are normally not exposed to ERK signals towards other wild type states and induces novel states expressing a mixture of transcriptional programs, including precociously activated endothelial genes. ERK signaling is therefore capable of introducing profoundly new gene expression states in developing embryos.

Show Abstract
September 6, 2024

A Method of Fundamental Solutions for Large-Scale 3D Elastance and Mobility Problems

Anna Broms, A. Barnett, Anna-Karin Tornberg

The method of fundamental solutions (MFS) is known to be effective for solving 3D Laplace and Stokes Dirichlet boundary value problems in the exterior of a large collection of simple smooth objects. Here we present new scalable MFS formulations for the corresponding elastance and mobility problems. The elastance problem computes the potentials of conductors with given net charges, while the mobility problem -- crucial to rheology and complex fluid applications -- computes rigid body velocities given net forces and torques on the particles. The key idea is orthogonal projection of the net charge (or forces and torques) in a rectangular variant of a "completion flow". The proposal is compatible with one-body preconditioning, resulting in well-conditioned square linear systems amenable to fast multipole accelerated iterative solution, thus a cost linear in the particle number. For large suspensions with moderate lubrication forces, MFS sources on inner proxy-surfaces give accuracy on par with a well-resolved boundary integral formulation. Our several numerical tests include a suspension of 10000 nearby ellipsoids, using 26 million total preconditioned degrees of freedom, where GMRES converges to five digits of accuracy in under two hours on one workstation.

Show Abstract

Reaction Rate Theory for Electric Field Catalysis in Solution

Sohang Kundu, T. Berkelbach

The application of an external, oriented electric field has emerged as an attractive technique for manipulating chemical reactions. Because most applications occur in solution, a theory of electric field catalysis requires treatment of the solvent, whose interaction with both the external field and the reacting species modifies the reaction energetics and thus the reaction rate. Here, we formulate such a transition state theory using a dielectric continuum model, and we incorporate dynamical effects due to solvent motion via Grote–Hynes corrections. We apply our theory to the Menshutkin reaction between CH3I and pyridine, which is catalyzed by polar solvents, and to the symmetric SN2 reaction of F– with CH3F, which is inhibited by polar solvents. At low applied field strengths when the solvent responds linearly, our theory predicts near-complete quenching of electric field catalysis. However, a qualitative treatment of the nonlinear response (i.e., dielectric saturation) shows that catalysis can be recovered at appreciable field strengths as solvent molecules begin to align with the applied field direction. The dynamical correction to the rate constant is seen to vary nonmonotonically with increasing solvent polarity due to contrasting effects of the screening ability and the longitudinal relaxation time of the solvent.

Show Abstract

Attractive Haldane bilayers for trapping non-Abelian anyons

We study the interplay between intrinsic topological order and superconductivity in a two-component Haldane bilayer, where the two layers are coupled by an attractive force. We obtain the phase diagram of the model with exact diagonalization in finite size, and develop arguments to assess the stability of the observed phases in the thermodynamic limit. Our main result is that a finite critical attraction strength is needed to pair fermions forming a fractional topological order. This behavior can be harnessed to create clean interfaces between a fractional topological insulator and a superconductor by gating, wherein non-Abelian parafermionic modes are trapped. We discuss realization of such interfaces in the bulk of double bilayers of transition metal dichalcogenides by inhomogenous electrostatic gating, which should mitigate the spurious effects of disorder and crystalline defects present on physical edges.
Show Abstract
September 1, 2024

Superconductivity and Mott Physics in Organic Charge Transfer Materials

The phase diagrams of quasi two-dimensional organic superconductors display a plethora of fundamental phenomena associated with strong electron correlations, such as unconventional superconductivity, metal-insulator transitions, frustrated magnetism and spin liquid behavior. We analyze a minimal model for these compounds, the Hubbard model on an anisotropic triangular lattice, using cutting-edge quantum embedding methods respecting the lattice symmetry. We demonstrate the existence of unconventional superconductivity by directly entering the symmetry-broken phase. We show that the crossover from the Fermi liquid metal to the Mott insulator is associated with the formation of a pseudogap. The predicted momentum-selective destruction of the Fermi surface into hot and cold regions provides motivation for further spectroscopic studies. Our results are in remarkable agreement with experimental phase diagrams of κ-BEDT organics.
Show Abstract
September 1, 2024

Doping the Mott insulating state of the triangular-lattice Hubbard model reveals the Sordi transition

It has been reported that upon doping a Mott insulator, there can be a crossover to a pseudogaped metallic phase followed by a first-order transition to another thermodynamically stable metallic phase. We call this first-order metal-metal transition the Sordi transition. It was argued that the initial reports of Sordi transitions at finite temperature could be explained by finite size effects and biases related to the model and method used. In this work, we report the Sordi transition on larger clusters at finite temperature on a triangular lattice, where long-range antiferromagnetic fluctuations are frustrated, using a different method, the dynamical cluster approximation instead of the cellular dynamical mean-field theory. This demonstrates that this first-order transition is a directly observable transition in doped Mott insulators and that it is relevant for experiments on candidate spin-liquid organic materials.
Show Abstract
September 1, 2024
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.