2573 Publications

Low-rank Green’s function representations applied to dynamical mean-field theory

Nan Sheng , Alexander Hampel, Sophie Beck, Olivier Parcollet, Nils Wentzell, J. Kaye, Kun Chen

Several recent works have introduced highly compact representations of single-particle Green's functions in the imaginary time and Matsubara frequency domains, as well as efficient interpolation grids used to recover the representations. In particular, the intermediate representation with sparse sampling and the discrete Lehmann representation (DLR) make use of low rank compression techniques to obtain optimal approximations with controllable accuracy. We consider the use of the DLR in dynamical mean-field theory (DMFT) calculations, and in particular show that the standard full Matsubara frequency grid can be replaced by the compact grid of DLR Matsubara frequency nodes. We test the performance of the method for a DMFT calculation of Sr$_2$RuO$_4$ at temperature $50$K using a continuous-time quantum Monte Carlo impurity solver, and demonstrate that Matsubara frequency quantities can be represented on a grid of only 36 nodes with no reduction in accuracy, or increase in the number of self-consistent iterations, despite the presence of significant Monte Carlo noise.

Show Abstract

An unusual pulse shape change event in PSR J1713+0747 observed with the Green Bank Telescope and CHIME

Ross J. Jennings, James M. Cordes, Shami Chatterjee, ..., C. Mingarelli, et. al.

The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between April 16 and 17, 2021 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multi-frequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the 100-meter Green Bank Telescope (GBT) in a three-year period encompassing the shape change event, between February 2020 and February 2023. As of February 2023, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying TOA residuals display a strong non-monotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν) nor a change in dispersion measure (DM) alone (which would produce a delay proportional to ν−2). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747 (Demorest et al. 2013; Lam et al. 2016), as well as to a similar event observed in PSR J1643-1224 in 2015 (Shannon et al. 2016).

Show Abstract

Ensemble reweighting using Cryo-EM particles

P. Tang, D. Silva-Sánchez, J. Giraldo-Barreto, B. Carpenter, S. Hanson, A. Barnett, E. Thiede, P. Cossio

Cryo-electron microscopy (cryo-EM) has recently become a leading method for obtaining high-resolution structures of biological macromolecules. However, cryo-EM is limited to biomolecular samples with low conformational heterogeneity, where most conformations can be well-sampled at various projection angles. While cryo-EM provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot retrieve the ensemble distribution of possible molecular conformations from these data. To overcome these limitations, we build on a previous Bayesian approach and develop an ensemble refinement framework that estimates the ensemble density from a set of cryo-EM particle images by reweighting a prior conformational ensemble, e.g., from molecular dynamics simulations or structure prediction tools. Our work provides a general approach to recovering the equilibrium probability density of the biomolecule directly in conformational space from single-molecule data. To validate the framework, we study the extraction of state populations and free energies for a simple toy model and from synthetic cryo-EM particle images of a simulated protein that explores multiple folded and unfolded conformations.

Show Abstract

Ensemble Reweighting Using Cryo-EM Particle Images

W. S. Wai Shing, David Silva-Sánchez, Julian Giraldo-Barreto, B. Carpenter, S. Hanson, A. Barnett, E. Thiede, P. Cossio

Cryo-electron microscopy (cryo-EM) has recently become a leading method for obtaining high-resolution structures of biological macromolecules. However, cryo-EM is limited to biomolecular samples with low conformational heterogeneity, where most conformations can be well-sampled at various projection angles. While cryo-EM provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot retrieve the ensemble distribution of possible molecular conformations from these data. To overcome these limitations, we build on a previous Bayesian approach and develop an ensemble refinement framework that estimates the ensemble density from a set of cryo-EM particle images by reweighting a prior conformational ensemble, e.g., from molecular dynamics simulations or structure prediction tools. Our work provides a general approach to recovering the equilibrium probability density of the biomolecule directly in conformational space from single-molecule data. To validate the framework, we study the extraction of state populations and free energies for a simple toy model and from synthetic cryo-EM particle images of a simulated protein that explores multiple folded and unfolded conformations.

Show Abstract

Dual mechanism of kinetochore microtubule detachment

William Conway, Gloria Ha, D. Needleman

During eukaryotic cell division, microtubules connect to chromosomes by attaching to the kinetochore via the NDC80 complex (NDC80c). The regulation of kinetochore microtubule (KMT) detachment is crucial for correcting mitotic errors. Here, we investigate the mechanism of KMT detachment by combining photoconversion measurements of KMT detachment rate, FLIM-FRET measurements of NCD80c/KMT binding, and mathematical modeling. Our results support a dual detachment mechanism in which KMTs detach from kinetochores when either 1) all NDC80c spontaneously unbind from the KMT or 2) following KMT catastrophe. We identify kinetochore components that selectively impact these two mechanisms and show that the affinity of NDC80c for KMTs is reduced at low-tension, non-bioriented kinetochores due to centromere-localized Aurora B phosphorylating the NDC80c, resulting in an elevated detachment rate for the associated KMTs. Taken together, this work leads to a biophysical model for the molecular basis of KMT detachments and their regulation during mitotic error correction.

Show Abstract
June 7, 2023

Algebraically rigorous quaternion framework for the neural network pose estimation problem

C. Lin, Andrew J. Hanson, S. Hanson

The 3D pose estimation problem – aligning pairs of noisy 3D point clouds – is a problem with a wide variety of real- world applications. Here we focus on the use of quaternion- based neural network approaches to this problem and ap- parent anomalies that have arisen in previous efforts to re- solve them. In addressing these anomalies, we draw heav- ily from the extensive literature on closed-form methods to solve this problem. We suggest that the major concerns that have been put forward could be resolved using a sim- ple multi-valued training target derived from rigorous theo- retical properties of the rotation-to-quaternion map of Bar- Itzhack. This multi-valued training target is then demon- strated to have good performance for both simulated and ModelNet targets. We provide a comprehensive theoretical context, using the quaternion adjugate, to confirm and es- tablish the necessity of replacing single-valued quaternion functions by quaternions treated in the extended domain of multiple-charted manifolds.

Show Abstract

Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet

Two-dimensional (2D) magnetic systems possess versatile magnetic order and can host tunable magnons carrying spin angular momenta. Recent advances show angular momentum can also be carried by lattice vibrations in the form of chiral phonons. However, the interplay between magnons and chiral phonons as well as the details of chiral phonon formation in a magnetic system are yet to be explored. Here, we report the observation of magnon-induced chiral phonons and chirality selective magnon-phonon hybridization in a layered zigzag antiferromagnet (AFM) FePSe
Show Abstract
June 1, 2023

Electron cooling in graphene enhanced by plasmon-hydron resonance

Evidence is accumulating for the crucial role of a solid's free electrons in the dynamics of solid-liquid interfaces. Liquids induce electronic polarization and drive electric currents as they flow; electronic excitations, in turn, participate in hydrodynamic friction. Yet, the underlying solid-liquid interactions have been lacking a direct experimental probe. Here, we study the energy transfer across liquid-graphene interfaces using ultrafast spectroscopy. The graphene electrons are heated up quasi-instantaneously by a visible excitation pulse, and the time evolution of the electronic temperature is then monitored with a terahertz pulse. We observe that water accelerates the cooling of the graphene electrons, whereas other polar liquids leave the cooling dynamics largely unaffected. A quantum theory of solid-liquid heat transfer accounts for the water-specific cooling enhancement through a resonance between the graphene surface plasmon mode and the so-called hydrons -- water charge fluctuations --, particularly the water libration modes, that allows for efficient energy transfer. Our results provide direct experimental evidence of a solid-liquid interaction mediated by collective modes and support the theoretically proposed mechanism for quantum friction. They further reveal a particularly large thermal boundary conductance for the water-graphene interface and suggest strategies for enhancing the thermal conductivity in graphene-based nanostructures.
Show Abstract

Low rank Green’s function representations applied to dynamical mean-field theory

Several recent works have introduced highly compact representations of single-particle Green's functions in the imaginary time and Matsubara frequency domains, as well as efficient interpolation grids used to recover the representations. In particular, the intermediate representation with sparse sampling and the discrete Lehmann representation (DLR) make use of low-rank compression techniques to obtain optimal approximations with controllable accuracy. We consider the use of the DLR in dynamical mean-field theory (DMFT) calculations, and in particular, show that the standard full Matsubara frequency grid can be replaced by the compact grid of DLR Matsubara frequency nodes. We test the performance of the method for a DMFT calculation of Sr
Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.