2005 Publications

Metallic Microswimmers Driven up the Wall by Gravity

Q. Brosseau, F. Balboa Usabiaga, E. Lushi, Y. Wu, L. Ristroph, M. D. Ward, M. Shelley, J. Zhang

Experiments on autophoretic bimetallic nanorods propelling within a fuel of hydrogen peroxide show that tail-heavy swimmers preferentially orient upwards and ascend along inclined planes. We show that such gravitaxis is strongly facilitated by interactions with solid boundaries, allowing even ultraheavy microswimmers to climb nearly vertical surfaces. Theory and simulations show that the buoyancy or gravitational torque that tends to align the rods is reinforced by a fore-aft drag asymmetry induced by hydrodynamic interactions with the wall.

Show Abstract
June 11, 2021

Temporal integration of inductive cues on the way to gastrulation

Sarah McFann, Sayantan Dutta, Jared E. Toettcher, S. Shvartsman

In early development, cells commit to a single germ fate despite receiving multiple, conflicting inductive cues. Here, we examine how cells in the Drosophila embryo integrate promesodermal and proendodermal signals. We find that proendoderm signals repress transcriptional determinants of mesodermal cell movements during a critical time window in the early embryo. Based on precise optogenetic perturbations, live imaging, and computational modeling, our work provides a framework for quantitative understanding of combinatorial control of gastrulation dynamics. All study data are included in the article and/or supporting information.

Show Abstract

Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites

Parisa Hosseinzadeh, Paris R. Watson, Timothy W. Craven, V. Mulligan, et al.

Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational “anchor extension” methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain..

Show Abstract

A Tale of Two Grains: Impact of Grain Size on Ring Formation via Nonideal Magnetohydrodynamic Processes

Xiao Hu, L. Wang, Satoshi Okuzumi, Zhaohuan Zhu

Substructures in PPDs, whose ubiquity was unveiled by recent ALMA observations, are widely discussed regarding their possible origins. We carry out global full magnetohydrodynamic (MHD) simulations in axisymmetry, coupled with self-consistent ray-tracing radiative transfer, thermochemistry, and non-ideal MHD diffusivities. The abundance profiles of grains are also calculated based on the global dust evolution calculation, including sintering effects. We found that dust size plays a crucial role in the ring formation around the snow lines of protoplanetary disks (PPDs) through the accretion process. Disk ionization structures and thus tensorial conductivities depend on the size of grains.When grains are significantly larger than PAHs, the non-ideal MHD conductivities change dramatically across each snow line of major volatiles, leading to a sudden change of the accretion process across the snow lines and the subsequent formation of gaseous rings/gaps there. On the other hand,the variations of conductivities are a lot less with only PAH sized grains in disks and then these disks retain smoother radial density profiles across snow lines.

Show Abstract

Axisymmetric membranes with edges under external force: buckling, minimal surfaces, and tethers

L. Jia, Steven Pei, Robert A. Pelcovits, Thomas R. Powers

We use theory and numerical computation to determine the shape of an axisymmetric fluid membrane with a resistance to bending and constant area. The membrane connects two rings in the classic geometry that produces a catenoidal shape in a soap film. In our problem, we find infinitely many branches of solutions for the shape and external force as functions of the separation of the rings, analogous to the infinite family of eigenmodes for the Euler buckling of a slender rod. Special attention is paid to the catenoid, which emerges as the shape of maximal allowable separation when the area is less than a critical area equal to the planar area enclosed by the two rings. A perturbation theory argument directly relates the tension of catenoidal membranes to the stability of catenoidal soap films in this regime. When the membrane area is larger than the critical area, we find additional cylindrical tether solutions to the shape equations at large ring separation, and that arbitrarily large ring separations are possible. These results apply for the case of vanishing Gaussian curvature modulus; when the Gaussian curvature modulus is nonzero and the area is below the critical area, the force and the membrane tension diverge as the ring separation approaches its maximum value. We also examine the stability of our shapes and analytically show that catenoidal membranes have markedly different stability properties than their soap film counterparts.

Show Abstract
June 2, 2021

A magnon scattering platform

Tony X. Zhou, Joris J. Carmiggelt, Lisa M. Gächter, Ilya Esterlis, D. Sels, Rainer J. Stöhr, Chunhui Du, Daniel Fernandez, Joaquin F. Rodriguez-Nieva, Felix Büttner, E. Demler, Amir Yacoby
Scattering experiments have revolutionized our understanding of nature. Examples include the discovery of the nucleus, crystallography, and the discovery of the double helix structure of DNA. Scattering techniques differ by the type of the particles used, the interaction these particles have with target materials and the range of wavelengths used. Here, we demonstrate a new 2-dimensional table-top scattering platform for exploring magnetic properties of materials on mesoscopic length scales. Long lived, coherent magnonic excitations are generated in a thin film of YIG and scattered off a magnetic target deposited on its surface. The scattered waves are then recorded using a scanning NV center magnetometer that allows sub-wavelength imaging and operation under conditions ranging from cryogenic to ambient environment. While most scattering platforms measure only the intensity of the scattered waves, our imaging method allows for spatial determination of both amplitude and phase of the scattered waves thereby allowing for a systematic reconstruction of the target scattering potential. Our experimental results are consistent with theoretical predictions for such a geometry and reveal several unusual features of the magnetic response of the target, including suppression near the target edges and gradient in the direction perpendicular to the direction of surface wave propagation. Our results establish magnon scattering experiments as a new platform for studying correlated many-body systems.
Show Abstract

Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs

M. Ünzelmann, H. Bentmann, T. Figgemeier, P. Eck, J. N. Neu, B. Geldiyev, F. Diekmann, S. Rohlf, J. Buck, M. Hoesch, M. Kalläne, K. Rossnagel, R. Thomale, T. Siegrist, G. Sangiovanni, D. Di Sante, F. Reinert
Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl crystals exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the degeneracy point of the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic Weyl semimetal. We have probed the orbital and spin angular momentum (OAM and SAM) of the Weyl-fermion states by angle-resolved photoemission spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. Supported by first-principles calculations, our measurements image characteristics of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results experimentally visualize the non-trivial momentum-space topology in a Weyl semimetal, promising to have profound implications for the study of quantum-geometric effects in solids.
Show Abstract

Dynamical correlation energy of metals in large basis sets from downfolding and composite approaches

James M. Callahan, Malte F. Lange, Timothy C. Berkelbach
Coupled-cluster theory with single and double excitations (CCSD) is a promising ab initio method for the electronic structure of three-dimensional metals, for which second-order perturbation theory (MP2) diverges in the thermodynamic limit. However, due to the high cost and poor convergence of CCSD with respect to basis size, applying CCSD to periodic systems often leads to large basis set errors. In a common "composite" method, MP2 is used to recover the missing dynamical correlation energy through a focal-point correction, but the inadequacy of MP2 for metals raises questions about this approach. Here we describe how high-energy excitations treated by MP2 can be "downfolded" into a low-energy active space to be treated by CCSD. Comparing how the composite and downfolding approaches perform for the uniform electron gas, we find that the latter converges more quickly with respect to the basis set size. Nonetheless, the composite approach is surprisingly accurate because it removes the problematic MP2 treatment of double excitations near the Fermi surface. Using the method to estimate the CCSD correlation energy in the combined complete basis set and thermodynamic limits, we find CCSD recovers over 90 percent of the exact correlation energy at r
Show Abstract

Rank-normalization, folding, and localization: An improved \(R\) for assessing convergence of MCMC

Aki Vehtari, Andrew Gelman, Daniel Simpson, B. Carpenter, Paul-Christian Bürkner

Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic R of Gelman and Rubin (1992) has serious flaws. Traditional R will fail to correctly diagnose convergence failures when the chain has a heavy tail or when the variance varies across the chains. In this paper we propose an alternative rank-based diagnostic that fixes these problems. We also introduce a collection of quantile-based local efficiency measures, along with a practical approach for computing Monte Carlo error estimates for quantiles. We suggest that common trace plots should be replaced with rank plots from multiple chains. Finally, we give recommendations for how these methods should be used in practice.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates