2005 Publications

Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States

Tor S. Haugland, Enrico Ronca, Eirik F. Kjøonstad, Rubio, Angel, Henrik Koch

We present an ab initio correlated approach to study molecules that interact strongly with quantum fields in an optical cavity. Quantum electrodynamics coupled cluster theory provides a non-perturbative description of cavity-induced effects in ground and excited states. Using this theory, we show how quantum fields can be used to manipulate charge transfer and photochemical properties of molecules. We propose a strategy to lift electronic degeneracies and induce modifications in the ground state potential energy surface close to a conical intersection.

Show Abstract

Fast and Accurate Non-Linear Predictions of Universes with Deep Learning

Renan Alves Oliveira, Y. Li, Fracisco Villaescusa-Navarro, S. Ho, D. Spergel

Cosmologists aim to model the evolution of initially low amplitude Gaussian density fluctuations into the highly non-linear "cosmic web" of galaxies and clusters. They aim to compare simulations of this structure formation process with observations of large-scale structure traced by galaxies and infer the properties of the dark energy and dark matter that make up 95% of the universe. These ensembles of simulations of billions of galaxies are computationally demanding, so that more efficient approaches to tracing the non-linear growth of structure are needed. We build a V-Net based model that transforms fast linear predictions into fully nonlinear predictions from numerical simulations. Our NN model learns to emulate the simulations down to small scales and is both faster and more accurate than the current state-of-the-art approximate methods. It also achieves comparable accuracy when tested on universes of significantly different cosmological parameters from the one used in training. This suggests that our model generalizes well beyond our training set.

Show Abstract
arXiv e-prints
December 1, 2020

Nonmonotonic Temperature-Dependent Dissipation at Nonequilibrium in Atomically Thin Clean-Limit Superconductors

Avishai Benyamini, Dante M. Kennes, Evan J. Telford, Kenji Watanabe, Takashi Taniguchi, Andrew J. Millis, James Hone, Cory R. Dean, Abhay N. Pasupathy
Resistance in superconductors arises from the motion of vortices driven by flowing supercurrents or external electromagnetic fields and may be strongly affected by thermal or quantum fluctuations. The common expectation is that as the temperature is lowered, vortex motion is suppressed, leading to a decreased resistance. We show experimentally that in clean-limit atomically thin 2H-NbSe2 the resistance below the superconducting transition temperature may be nonmonotonic, passing through a minimum before increasing again as the temperature is decreased further. The effect is most pronounced in monolayer devices and cannot be understood in terms of known mechanisms. We propose a qualitative two-fluid vortex model in which thermal fluctuations of pinned vortices control the mobility of the free vortices. The findings provide a new perspective on fundamental questions of vortex mobility and dissipation in superconductors.
Show Abstract
December 1, 2020

Quantum Information and Algorithms for Correlated Quantum Matter

Kade Head-Marsden, J. Flick, Christopher J. Ciccarino, Prineha Narang
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Show Abstract
December 1, 2020

A biologically plausible neural network for local supervision in cortical microcircuits

A. Sengupta, S. Golkar, D. Lipshutz, D. Chklovskii, Y. Bahroun

The back propagation algorithm is an invaluable tool for training artificial neural networks; however, because of a weight sharing requirement, it does not provide a plausible model of brain function. Here, in the context of a two-layer network, we derive an algorithm for training a neural network which avoids this problem by not requiring explicit error computation and back propagation. Furthermore, our algorithm maps onto a neural network that bears a remarkable resemblance to the connectivity structure and learning rules of the cortex. We find that our algorithm empirically performs comparably to backprop on a number of datasets.

Show Abstract

A Spitzer survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time

M. Lacy, J.A. Surace, D. Farrah , ..., R. Somerville, et. al.

The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the ``DeepDrill'' survey, which used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two bands, centered on 3.6 μm and 4.5 μm. These observations expand the area which was covered by an earlier set of observations in these three fields by the Spitzer Extragalactic Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data cover the footprints of the LSST DDFs in the Extended Chandra Deep Field-South field (ECDFS), the ELAIS-S1 field (ES1), and the XMM Large-Scale Structure Survey field (XMM-LSS). The observations reach an approximate 5σ point-source depth of 2 μJy (corresponding to an AB magnitude of 23.1; sufficient to detect a 1011M⊙ galaxy out to z≈5) in each of the two bands over a total area of ≈29deg2. The dual-band catalogues contain a total of 2.35 million sources. In this paper we describe the observations and data products from the survey, and an overview of the properties of galaxies in the survey. We compare the source counts to predictions from the SHARK semi-analytic model of galaxy formation. We also identify a population of sources with extremely red ([3.6]−[4.5] >1.2) colours which we show mostly consists of highly-obscured active galactic nuclei.

Show Abstract

An Asymmetric Eclipse Seen Towards the Pre-Main Sequence Binary System V928 Tau

Dirk van Dam, Matthew Kenworthy, T. David, et. al.

K2 observations of the weak-lined T Tauri binary V928 Tau A+B show the detection of a single, asymmetric eclipse which may be due to a previously unknown substellar companion eclipsing one component of the binary with an orbital period > 66 days. Over an interval of about 9 hours, one component of the binary dims by around 60%, returning to its normal brightness about 5 hours later. From modeling of the eclipse shape we find evidence that the eclipsing companion may be surrounded by a disk or a vast ring system. The modeled disk has a radius of 0.9923±0.0005R∗, with an inclination of 56.78±0.03∘, a tilt of 41.22±0.05∘, an impact parameter of −0.2506±0.0002R∗ and an opacity of 1.00. The occulting disk must also move at a transverse velocity of 6.637±0.002R∗day−1, which depending on whether it orbits V928 Tau A or B, corresponds to approximately 73.53 or 69.26 kms−1. A search in ground based archival data reveals additional dimming events, some of which suggest periodicity, but no unambiguous period associated with the eclipse observed by K2. We present a new epoch of astrometry which is used to further refine the orbit of the binary, presenting a new lower bound of 67 years, and constraints on the possible orbital periods of the eclipsing companion. The binary is also separated by 18" (∼2250 au) from the lower mass CFHT-BD-Tau 7, which is likely associated with V928 Tau A+B. We also present new high dispersion optical spectroscopy that we use to characterize the unresolved stellar binary.

Show Abstract

CHD8 haploinsufficiency alters the developmental trajectories of human excitatory and inhibitory neurons linking autism phenotypes with transient cellular defects

C. Villa, C. Cheroni, A. López-Tóbon, C. Dotter, B. Oliveira, R. Sacco, A. Yahya, J. Morandell, M. Gabriele, C. Sommer, M. Gabitto, G. Testa, G. Novarino

Chromodomain helicase DNA-binding 8 (CHD8) is one of the most frequently mutated genes causative of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly and hence implicates cortical abnormalities in this form of ASD, the neurodevelopmental impact of human CHD8 haploinsufficiency remains unexplored. Here we combined human cerebral organoids and single cell transcriptomics to define the effect of ASD-linked CHD8 mutations on human cortical development. We found that CHD8 haploinsufficiency causes a major disruption of neurodevelopmental trajectories with an accelerated generation of inhibitory neurons and a delayed production of excitatory neurons alongside the ensuing protraction of the proliferation phase. This imbalance leads to a significant enlargement of cerebral organoids aligned to the macrocephaly observed in patients with CHD8 mutations. By adopting an isogenic design of patient-specific mutations and mosaic cerebral organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Finally, our results assign different CHD8-dependent molecular defects to particular cell types, pointing to an abnormal and extended program of proliferation and alternative splicing specifically affected in, respectively, the radial glial and immature neuronal compartments. By identifying temporally restricted cell-type specific effects of human CHD8 mutations, our study uncovers developmental alterations as reproducible endophenotypes for neurodevelopmental disease modelling.

Show Abstract
November 26, 2020
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates