2573 Publications

Reducing bias and variance for CTF estimation in single particle cryo-EM

Ayelet Heimowitz, J. Andén, Amit Singer

When using an electron microscope for imaging of particles embedded in vitreous ice, the recorded image, or micrograph, is a significantly degraded version of the tomographic projection of the sample. Apart from noise, the image is affected by the optical configuration of the microscope. This transformation is typically modeled as a convolution with a point spread function. The Fourier transform of this function, known as the contrast transfer function (CTF), is oscillatory, attenuating and amplifying different frequency bands, and sometimes flipping their signs. High-resolution reconstruction requires this CTF to be accounted for, but as its form depends on experimental parameters, it must first be estimated from the micrograph. We present a new method for CTF estimation based on multitaper techniques that reduce bias and variance in the estimate. We also use known properties of the CTF and the background power spectrum to further reduce the variance through background subtraction and steerable basis projection. We show that the resulting power spectrum estimates better capture the zero-crossings of the CTF and yield accurate CTF estimates on several experimental micrographs.

Show Abstract
January 29, 2020

Observation of high-temperature quantum anomalous Hall regime in intrinsic MnBi2Te4/Bi2Te3 superlattice

Haiming Deng, Zhiyi Chen, Agnieszka Wolos, Marcin Konczykowski, Kamil Sobczak, Joanna Sitnicka, Irina V. Fedorchenko, Jolanta Borysiuk, Tristan Heider, Lukasz Plucinski, Kyungwha Park, A. Georgescu, J. Cano, Lia Krusin-Elbaum

The quantum anomalous Hall effect is a fundamental transport response of a topologically non-trivial system in zero magnetic field. Its physical origin relies on the intrinsically inverted electronic band structure and ferromagnetism, and its most consequential manifestation is the dissipation-free flow of chiral charge currents at the edges that can potentially transform future quantum electronics. Here we report a previously unknown Berry-curvature-driven anomalous Hall regime ('Q-window') at above-Kelvin temperatures in the magnetic topological bulk crystals where through growth Mn ions self-organize into a period-ordered MnBi2Te4/Bi2Te3 superlattice. Robust ferromagnetism of the MnBi2Te4 monolayers opens a large surface gap, and anomalous Hall conductance reaches an e^2/h quantization plateau when the Fermi level is tuned into this gap within a Q-window in which the anomalous Hall conductance from the bulk is to a high precision zero. The quantization in this new regime is not obstructed by the bulk conduction channels and thus should be present in a broad family of topological magnets.

Show Abstract

Factorization of the translation kernel for fast rigid image alignment

An important component of many image alignment methods is the calculation of inner products (correlations) between an image of $n\times n$ pixels and another image translated by some shift and rotated by some angle. For robust alignment of an image pair, the number of considered shifts and angles is typically high, thus the inner product calculation becomes a bottleneck. Existing methods, based on fast Fourier transforms (FFTs), compute all such inner products with computational complexity $\mathcal{O}(n^3 \log n)$ per image pair, which is reduced to $\mathcal{O}(N n^2)$ if only $N$ distinct shifts are needed. We propose to use a factorization of the translation kernel (FTK), an optimal interpolation method which represents images in a Fourier--Bessel basis and uses a rank-$H$ approximation of the translation kernel via an operator singular value decomposition (SVD). Its complexity is $\mathcal{O}(Hn(n + N))$ per image pair. We prove that $H = \mathcal{O}((W + \log(1/\epsilon))^2)$, where $2W$ is the magnitude of the maximum desired shift in pixels and $\epsilon$ is the desired accuracy. For fixed $W$ this leads to an acceleration when $N$ is large, such as when sub-pixel shift grids are considered. Finally, we present numerical results in an electron cryomicroscopy application showing speedup factors of $3$-$10$ with respect to the state of the art.

Show Abstract

Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes

Amit Moscovich, Amit Halevi, J. Andén, Amit Singer

Single-particle electron cryomicroscopy is an essential tool for high-resolution 3D reconstruction of proteins and other biological macromolecules. An important challenge in cryo-EM is the reconstruction of non-rigid molecules with parts that move and deform. Traditional reconstruction methods fail in these cases, resulting in smeared reconstructions of the moving parts. This poses a major obstacle for structural biologists, who need high-resolution reconstructions of entire macromolecules, moving parts included. To address this challenge, we present a new method for the reconstruction of macromolecules exhibiting continuous heterogeneity. The proposed method uses projection images from multiple viewing directions to construct a graph Laplacian through which the manifold of three-dimensional conformations is analyzed. The 3D molecular structures are then expanded in a basis of Laplacian eigenvectors, using a novel generalized tomographic reconstruction algorithm to compute the expansion coefficients. These coefficients, which we name spectral volumes, provide a high-resolution visualization of the molecular dynamics. We provide a theoretical analysis and evaluate the method empirically on several simulated data sets.

Show Abstract

An image of the dust sublimation region in the nucleus of NGC 1068

GRAVITY Collaboration, O. Pfuhl, R. Davies, ..., A. Sternberg, et. al.

We present near-infrared interferometric data on the Seyfert 2 galaxy NGC 1068, obtained with the GRAVITY instrument on the European Southern Observatory Very Large Telescope Interferometer. The extensive baseline coverage from 5 to 60 M\lambda allowed us to reconstruct a continuum image of the nucleus with an unrivaled 0.2 pc resolution in the K-band. We find a thin ring-like structure of emission with a radius r = 0.24+/-0.03 pc, inclination i = 70+/-5 deg, position angle PA = -50+/-4 deg, and h/r < 0.14, which we associate with the dust sublimation region. The observed morphology is inconsistent with the expected signatures of a geometrically and optically thick torus. Instead, the infrared emission shows a striking resemblance to the 22 GHz maser disc, which suggests they share a common region of origin. The near-infrared spectral energy distribution indicates a bolometric luminosity of (0.4-4.7) x 10^45 erg/s, behind a large A_K ~ 5.5 (A_V ~ 90) screen of extinction that also appears to contribute significantly to obscuring the broad line region.

Show Abstract

Electromagnetic coupling in tight-binding models for strongly correlated light and matter

Jiajung Li, D. Golez, Giacomo Mazza, A. Millis, A. Georges, Martin Eckstein

We discuss the construction of low-energy tight-binding Hamiltonians for condensed matter systems with a strong coupling to the quantum electromagnetic field. Such Hamiltonians can be obtained by projecting the continuum theory on a given set of Wannier orbitals. However, different representations of the continuum theory lead to different low-energy formulations, because different representations may entangle light and matter, transforming orbitals into light-matter hybrid states before the projection. In particular, a multi-center Power-Zienau-Woolley transformation yields a dipolar Hamiltonian which incorporates the light-matter coupling via both Peierls phases and a polarization density. We compare this dipolar gauge Hamiltonian and the straightforward Coulomb gauge Hamiltonian for a one-dimensional solid, to describe sub-cycle light-driven electronic motion in the semiclassical limit, and a coupling of the solid to a quantized cavity mode which renormalizes the band-structure into electron-polariton bands. Both descriptions yield the same result when many bands are taken into account, but the dipolar Hamiltonian is more accurate when the model is restricted to few electronic bands, while the Coulomb Hamiltonian requires fewer electromagnetic modes.

Show Abstract

Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments

C Jackson, D Castro, G Saldi, R. Bonneau, D Gresham

Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.

Show Abstract
January 27, 2020

A Multi-Scale Tensor Network Architecture for Classification and Regression

Justin Reyes, M. Stoudenmire

We present an algorithm for supervised learning using tensor networks, employing a step of preprocessing the data by coarse-graining through a sequence of wavelet transformations. We represent these transformations as a set of tensor network layers identical to those in a multi-scale entanglement renormalization ansatz (MERA) tensor network, and perform supervised learning and regression tasks through a model based on a matrix product state (MPS) tensor network acting on the coarse-grained data. Because the entire model consists of tensor contractions (apart from the initial non-linear feature map), we can adaptively fine-grain the optimized MPS model backwards through the layers with essentially no loss in performance. The MPS itself is trained using an adaptive algorithm based on the density matrix renormalization group (DMRG) algorithm. We test our methods by performing a classification task on audio data and a regression task on temperature time-series data, studying the dependence of training accuracy on the number of coarse-graining layers and showing how fine-graining through the network may be used to initialize models with access to finer-scale features.

Show Abstract

A topological classification of molecules and chemical reactions with a perplectic structure

In this paper, a topological classification of molecules and their chemical reactions on a single particle level is proposed. We consider 0-dimensional electronic Hamiltonians in a real-space tight-binding basis with spinless time-reversal symmetry and an additional spatial reflection symmetry. The symmetry gives rise to a perplectic structure and suggests a ℤ2 invariant in form of a pfaffian, which can be captured by an entanglement cut. We apply our findings to a class of chemical reactions studied by Woodward and Hoffmann, where a reflection symmetry is preserved during a one-dimensional reaction path and argue that the topological classification should contribute to the rate constants of these reactions. More concretely, we find that a reaction takes place experimentally whenever the reactants and products can be adiabatically deformed into each other, while reactions that require a change of topological invariants have not been observed experimentally.

Show Abstract

Crescent states in charge-imbalanced polariton condensates

A. Strashko, F.M. Marchetti, A.H. MacDonald, J. Keeling

We study two-dimensional charge-imbalanced electron-hole systems embedded in an optical microcavity. We find that strong coupling to photons favors states with pairing at zero or small center of mass momentum, leading to a condensed state with spontaneously broken time-reversal and rotational symmetry, and unpaired carriers that occupy an anisotropic crescent-shaped sliver of momentum space. The crescent state is favoured at moderate charge imbalance, while a Fulde--Ferrel--Larkin--Ovchinnikov-like state --- with pairing at large center of mass momentum --- occurs instead at strong imbalance. The crescent state stability results from long-range Coulomb interactions in combination with extremely long-range photon-mediated interactions.

Show Abstract
January 21, 2020
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates

privacy consent banner

Privacy preference

We use cookies to provide you with the best online experience. By clicking "Accept All," you help us understand how our site is used and enhance its performance. You can change your choice at any time here. To learn more, please visit our Privacy Policy.